

FDN337N

N-Channel Logic Level Enhancement Mode Field Effect Transistor

General Description

SuperSOT™-3 N-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- Industry standard outline SOT-23 surface mount package using proprietary SuperSOT[™]-3 design for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.

Absolute Maximum Ratings T_A = 25°C unless other wise noted

Symbol	Parameter	FDN337N	Units	
V _{DSS}	Drain-Source Voltage	20	V	
/ _{GSS}	Gate-Source Voltage - Continuous	±8	V	
I _D	Maximum Drain Current - Continuous (Note 1a)	2.5	А	
	- Pulsed	10		
P _D	Maximum Power Dissipation (Note 1a)	0.5	W	
	(Note 1b)	0.46		
T_{J} , T_{STG}	Operating and Storage Temperature Range	-55 to 150	°C	
THERMA	L CHARACTERISTICS		·	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	250	°C/W	
₹ _{euc}	Thermal Resistance, Junction-to-Case (Note 1)	75	°C/W	

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAI	RACTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		20			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$				1	μA
			$T_J = 55^{\circ}C$			10	μΑ
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 8 V_{DS} = 0 V$				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHAR	ACTERISTICS (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$		0.5		1	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, I_{D} = 2.5 \text{ A}$				0.052	Ω
		$V_{GS} = 2.5 \text{ V}, I_D = 2 \text{ A}$				0.08	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$		10			Α
DRAIN-SO	URCE DIODE CHARACTERISTICS AND MAXI	MUM RATINGS					
I _s	Maximum Continuous Drain-Source Diode Forward Current					0.42	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 0.42 \text{ A} \text{ (Note 2)}$				1.2	V

Notes

 R_{BAR} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of guaranteed by design while R_{BCA} is determined by the user's board design. the drain pins. $R_{\mbox{\tiny BJC}}$ is

Typical $R_{\theta^{\text{JA}}}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

a. 250°C/W when mounted on a 0.02 in² pad of 2oz Cu. b. 270°C/W when mounted on a 0.001 in² pad of 2oz Cu.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.