Data sheet acquired from Harris Semiconductor

CD4098B Types

CMOS Dual Monostable Multivibrator

High-Voltage Types (20-Volt Rating)

■ CD4098B dual monostable multivibrator provides stable retriggerable/resettable one-shot operation for any fixed-voltage timing application.

An external resistor (Rx) and an external capacitor (Cx) control the timing for the circuit. Adjustment of Rx and Cx provides a wide range of output pulse widths from the Q and Q terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of Rx and

Leading-edge-triggering (+TR) and trailing-edge-triggering (-TR) inputs are provided for triggering from either edge of an input pulse. An unused +TR input should be tied to VSS. An unused -TR input should be tied to VDD. A RESET (on low level) is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on. An unused RESET input should be tied to VDD. However, if an entire section of the CD4098B is not used, its RESET should be tied to VSS. See Table I.

In normal operation the circuit triggers (extends the output pulse one period) on the application of each new trigger pulse. For operation in the non-retriggerable mode, Q is connected to -TR when leading-edge triggering (+TR) is used or Q is connected to +TR when trailing-edge triggering (-TR) is used.

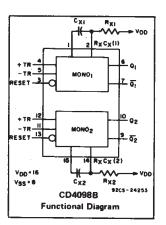
The time period (T) for this multivibrator can be approximated by: $T_X=\frac{1}{2}R_XC_X$ for $C_X \ge$ 0.01 µF. Time periods as a function of Rx for values of CX and VDD are given in Fig. 8. Values of T vary from unit to unit and as a function of voltage, temperature, and RXCX.

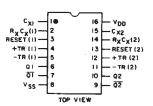
The minimum value of external resistance, R_X , is 5 k Ω . The maximum value of external capacitance, C_X , is 100 μF . Fig. 9 shows time periods as a function of CX for values of RX and V_{DD}

The output pulse width has variations of ±2.5% typically, over the temperature range of -55°C to 125°C for Cx=1000 pF and $R_X=100 k\Omega$.

For power supply variations of ±5%, the output pulse width has variations of ±0.5% typically, for VDD=10 V and 15 V and ±1% typically, for VDD=5 V at Cx=1000 pF and $R_X=5 k\Omega$.

These types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic package (Esuffix), and in chip form (H suffix).


The CD4098B is similar to type MC14528.


Features:

- Retriggerable/resettable capability
- Trigger and reset propagation delays independent of R_X, C_X
- Triggering from leading or trailing edge
- Q and Q buffered outputs available
- Separate resets
- Wide range of output-pulse widths
- 100% tested for maximum quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range): 1 V at V_{DD}= 5 V 2 V at V_{DD}=10 V 2.5 V at V_{DD}=15 V 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices."

Applications:

- Pulse delay and timing
- Pulse shaping
- Astable multivibrator

TERMINALS 1,8,15 ARE ELECTRICALLY CONNECTED INTERNALLY

92CS-24848RI

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD)

0.5V to +20V	Voltages referenced to V _{SS} Terminal)
	INPUT VOLTAGE RANGE, ALL INPUTS
±10mA	
. (P _D):	POWER DISSIPATION PER PACKAGE
	For TA = -55°C to +100°C
Derate Linearity at 12mW/°C to 200mW	For TA = +100°C to +125°C
RANSISTOR	DEVICE DISSIPATION PER OUTPUT 1
ATURE RANGE (All Package Types) 100mW	FOR TA = FULL PACKAGE-TEMPER
(T _A)55°C to +125°C	
tg)85°C to +150°C	STORAGE TEMPERATURE RANGE (Ts
	LEAD TEMPERATURE (DURING SOLE
0.79mm) from case for 10s max +265°C	At distance $1/16 \pm 1/32$ inch (1.59 \pm

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected. so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD}	LIN			
CHARACTERISTIC	V	MIN	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package-Temperature Range)	_	3	18	V	
Trigger Pulse Width t _W (TR)	5 10 15	140 60 40	-	ns	
Reset Pulse Width tw(R) (This is a function of C _X)		So Dynami Chart Fig.	· -		
Trigger Rise or Fall Time t _r (TR), t _f (TR)	5 - 15	-	100	μs	

CD4098B Types

TABLE I
CD4098B FUNCTIONAL TERMINAL CONNECTIONS

FUNCTION		TO 4. NO.		TO I. NO.	l -	PULSE RM. NO.	OTHER CONNECTIONS	
	MONO ₁	MONO ₂						
Leading-Edge Trigger/ Retriggerable	3, 5	11, 13			4	_12		
Leading-Edge Trigger/ Non-retriggerable	3	13			4	12	5-7	11.9
Trailing-Edge Trigger/ Retriggerable	3.	13	4	12	5	11		
Trailing-Edge Trigger/ Non-retriggerable	3	13			5	11	4-6	12-10
Unused Section	5	11	3, 4	12, 13				

NOTES:

- 1. A RETRIGGERABLE ONE-SHOT MULTI-VIBRATOR HAS AN OUTPUT PULSE WIDTH WHICH IS EXTENDED ONE FULL TIME PERIOD (T_X) AFTER APPLICATION OF THE LAST TRIGGER PULSE.
 - The minimum time between retriggering edges (or trigger and retrigger edges) is 40 per cent of (T_X) .
- 2. A NON-RETRIGGERABLE ONE-SHOT MULTIVIBRATOR HAS A TIME PERIOD TX REFERENCED FROM THE APPLICATION OF THE FIRST TRIGGER PULSE.

RETRIGGERABLE MODE PULSE WIDTH

(+TR MODE)

NON-RETRIGGERABLE MODE PULSE
WIDTH
(+TR MODE)

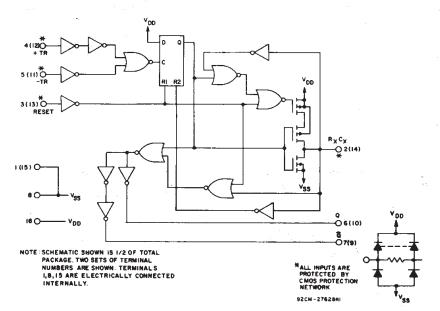


Fig. 4 - CD4098B logic diagram.

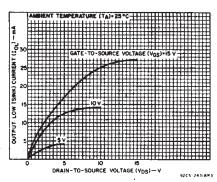


Fig. 1 — Typical output low (sink) current characteristics.

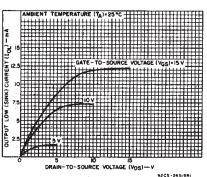


Fig. 2 — Minimum output low (sink) current characteristics.

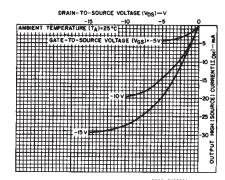


Fig. 3 — Typical output high (source) current characteristics.

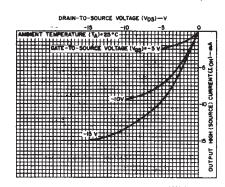


Fig. 5 — Minimum output high (source) current characteristics.

CD4098B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CON VO (V)	DITIOI V _{IN} (V)	VS V _{DD} (V)	LIMI:	TS AT I	NDICAT	ED TEN +125	MPERAT	rures (4 +25 Typ.	PC)	UNITS
Quiescent		0,5	5	1	1	30	30	_	0.02	-	
Device		0,10	10	2	2	60	60	 -	0.02	1	ł
Current	_	0.15	15	4	4	120	120	 	0.02	2	μА
IDD Max.		0.20	20	20	20	600	600	 	0.02	20	1
Output Low (Sink) Current,	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1		
· ·	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	<u> </u>	,
Output High	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-	mA
(Source)	4.6 2.5	0,5	5	-0.64		-0.42					'''
Current.	9.5	0,5	10	-2	-1.8	-1.3	-1.15	-1.6	-3.2		ļ
I _{OH} Min.	13.5	0,10	15	-1.6 -4.2	-1.5 -4	-1.1	-0.9	-1.3	-2.6	· -	
	13.5	0,15	15	-4.2	_4	-2.8	-2.4	-3.4	-6.8		
Output Voltage:		0,5	5		0.0			_	0	0.05	
Low-Level,		0,10	10		0.0				0	0.05	
VOL Max.		0,15	15		0.0)5		-	0	0.05	v
Output Volt-		0,5	5		4.9			4.95	5	-	,
High-Level,		0,10	10		9.9			9.95	10	_	
V _{OH} Min.	_	0,15	15		14.	95		14.95	. 15	-	
Input Low	0.5,4.5		5		1.	5		_	_	1.5	
Voltage,	1,9		10		3			_	_	3	
V _{IL} Max.	1.5,13.5		15		4			_	_	4	
Input High	0.5,4.5	- 1	-5		3.	 5		3.5	_	_	٧
Voltage,	1,9	_	10	7				7	_	_	
V _{IH} Min.	1.5,13.5		15	11				11	-	_	
Input Current, I _{IN} Max.	; - -	0,18	18	±0.1	±0.1	±1	±1	_	±10 ⁻⁵	±0.1	μА
Output Leakage IOUT Max.	0,18	0,18	18	±0.4	±0.4	±12	±12	_	±10 ⁻⁴	±0.4	μΑ

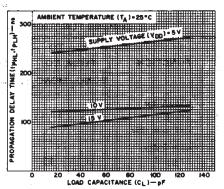


Fig. 6 - Typical propagation delay time vs.
load capacitance, trigger into Q
out. (All values of C_X and R_X.)

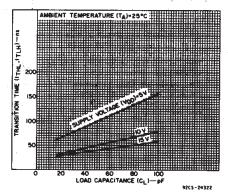


Fig. 7 – Transition time vs. load capacitance for R_X = 5 k Ω -10000 k Ω and C_X = 15 pF-10000 pF.

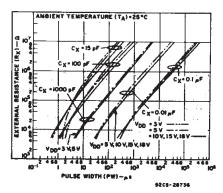


Fig. 8 — Typical external resistance vs. pulse width.

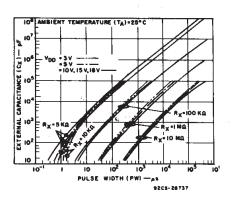


Fig. 9 — Typical external capacitance vs. pulse width.

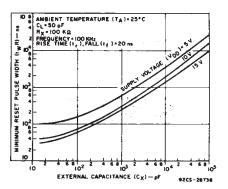


Fig. 10 – Typical minimum reset pulse width vs. external capacitance.

DYNAMIC ELECTRICAL CHARACTERISTICS

At $T_A = 25^{\circ}C$; Input $t_r, t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω

CHARACTERISTIC	TEST	CONDITI	LIM			
CHARACTERISTIC	R _X (kΩ)	C _X (pF)	V _{DD} (V)	Тур.	Max.	UNITS
Trigger Propagation Delay Time	5 to		5	250	500	
+TR, −TR to Q, Q	10,000	≥15	- 10	125	250	ns
^t PHL ^{, t} PLH	10,000		15	100	200	
Minimum Trigger Pulse Width,	5 to		5	70	140	
* *	10,000	≥15	10	30	60	ns
twH, twL	10,000		15	20	40	
Transition Time,	5 to		- 5	100	200	
^t TLH	10,000	≥15	10	50	100	
	10,000		15	40	80	
	5 to	15 to	5	100	200	
	10,000	10,000	10	50	100	
			15	40	80	
	5 to	0.01 μF	5	150	300	ns
^t THL	10,000	to	10	75	150	
		0.1 μF	15	65	130	
	5 to	0.1 μF	5	250	500	
	10,000	to	10	150	300	
		1 μF	15	80	160	
Reset Propagation Delay Time,	5 to		5	225	450	1
T _{PHL} , T _{PLH}	10,000	≥15	10	125	250	ns
			15	75	150	
		15	5	100	200	ns
			10	40	80	
			15	30	60	
Minimum Reset Pulse Width,	100		5	600	1200	
t _W R	100	1000	10 15	300 250	600 500	
			5			
l i		0.1 μF	10	25 15	50 30	μs
_[υ. ι με	15	10	20	
Trigger Rise or Fall Time			5 to	10		
t _r (TR), t _f (TR)	-		15	<u></u>	100	μs
Pulse Width Match		3	5	5	10	
Between Circuits in	10	10,000	10	7.5	15	%
Same Package			15	7.5	15	, ,
Input Capacitance, CIN		Any Input		5	7.5	ρF

TEST CIRCUITS

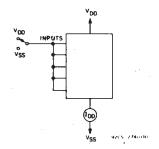


Fig. 12 — Quiescent-device-current test circuits.

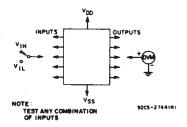


Fig. 13 - Input-voltage test circuit.

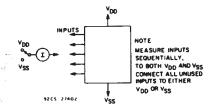


Fig. 14 — Input leakage current test circuit.

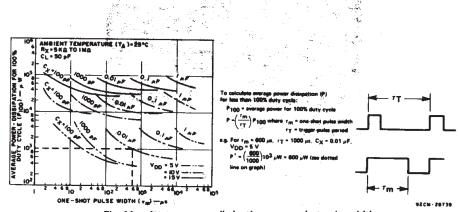


Fig. 11 - Average power dissipation vs. one-shot pulse width.

CD4098B Types

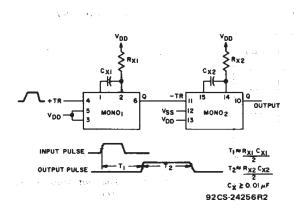


Fig. 15 - Pulse delay.

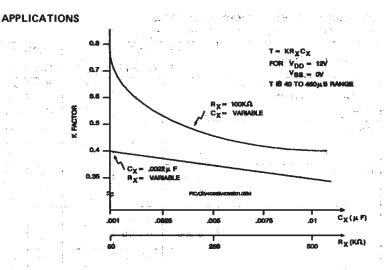


Fig. 17 - K-Factor for $V_{DD} = 12V$.

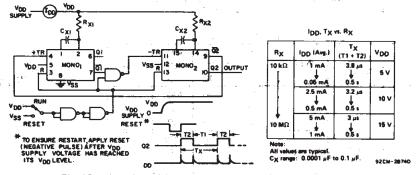
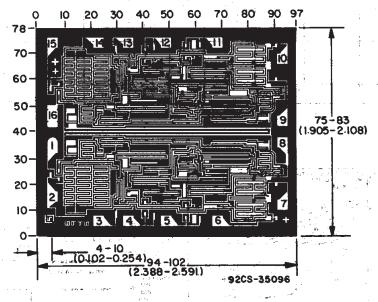



Fig. 16 - Astable multivibrator with restart after reset capability.

Dimensions and Pad Layout for CD4098BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated