- $1.65-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ Operation
- Useful for Both Analog and Digital Applications
- Specified Break-Before-Make Switching
- Rail-to-Rail Signal Handling
- High Degree of Linearity
- High Speed, Typically 0.5 ns ($\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)
- Low On-State Resistance, Typically $\approx 6 \Omega$ ($\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

description/ordering information

This single-pole, double-throw (SPDT) analog switch is designed for $1.65-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The SN74LVC1G3157 can handle both analog and digital signals. The device permits signals with amplitudes of up to V_{CC} (peak) to be transmitted in either direction.
Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

ORDERING INFORMATION

TA	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING \ddagger
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	NanoStarTM - WCSP (DSBGA) 0.23-mm Large Bump - YEP	Tape and reel	SN74LVC1G3157YEPR	C5_
	NanoFree ${ }^{\text {TM }}$ - WCSP (DSBGA) 0.23 -mm Large Bump - YZP (Pb-free)		SN74LVC1G3157YZPR	
	SOT (SOT-23) - DBV	Tape and reel	SN74LVC1G3157DBVR	CC5
	SOT (SC-70) - DCK	Tape and reel	SN74LVC1G3157DCKR	C5

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
\ddagger DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.
FUNCTION TABLE

CONTROL INPUT S	ON CHANNEL
L	B1
H	B2

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \text { (see Note 1) . }-0.5 \mathrm{~V} \text { to } 6.5 \mathrm{~V} \\
& \text { Control input voltage range, } \mathrm{V}_{\text {IN }} \text { (see Notes } 1 \text { and 2) . } 0.5 \mathrm{~V} \text { to } 6.5 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Continuous current through } V_{\text {CC }} \text { or GND . } \pm 100 \mathrm{~mA} \\
& \text { Package thermal impedance, } \theta_{J A} \text { (see Note 6): DBV package . 165} \mathrm{C} / \mathrm{W} \\
& \text { DCK package ... } 258^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { YEP/YZP package . } 123^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \text {. }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. All voltages are with respect to ground unless otherwise specified. } \\
& \text { 2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. } \\
& \text { 3. This value is limited to } 5.5 \mathrm{~V} \text { maximum. } \\
& \text { 4. } \mathrm{V}_{\mathrm{I}}, \mathrm{~V}_{\mathrm{O}}, \mathrm{~V}_{\mathrm{A}} \text {, and } \mathrm{V}_{\mathrm{Bn}} \text { are used to denote specific conditions for } \mathrm{V}_{\mathrm{I} / \mathrm{O}} \text {. } \\
& \text { 5. II, } I_{O}, I_{A} \text {, and } I_{B n} \text { are used to denote specific conditions for } I_{I / O} \text {. } \\
& \text { 6. The package thermal impedance is calculated in accordance with JESD 51-7. }
\end{aligned}
$$

recommended operating conditions (see Note 7)

		MIN	MAX	UNIT
V_{CC}		1.65	5.5	V
$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$		0	VCC	V
VIN		0	5.5	V
High-level input voltage, control input	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	$\mathrm{V}_{\mathrm{CC}} \times 0.75$		V
	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 5.5 V	$\mathrm{V}_{\mathrm{CC}} \times 0.7$		
Low-level input voltage, control input	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	$\mathrm{V}_{\mathrm{CC}} \times 0.25$		V
	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 5.5 V	$\mathrm{V}_{\mathrm{CC}} \times 0.3$		
$\Delta t / \Delta v \quad$ Input transition rise/fall time	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		20	ns / V
	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		20	
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		10	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		10	
$\mathrm{T}_{\text {A }}$		-40	85	${ }^{\circ} \mathrm{C}$

NOTE 7: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS			VCC	MIN	TYP†	MAX	UNIT			
ron	On-state switch resistance \ddagger		See Figures 1 and 2	$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{I}^{\mathrm{O}}=4 \mathrm{~mA}$	1.65 V		11	20	Ω			
			$\mathrm{V}_{1}=1.65 \mathrm{~V}$	$\mathrm{I}=-4 \mathrm{~mA}$			15	50					
			$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{I}=8 \mathrm{~mA}$	2.3 V		8	12					
			$\mathrm{V}_{1}=2.3 \mathrm{~V}$	$\mathrm{I}=-8 \mathrm{~mA}$			11	30					
			$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{O}=24 \mathrm{~mA}$	3 V		7	9					
			$\mathrm{V}_{1}=3 \mathrm{~V}$	$1 \mathrm{O}=-24 \mathrm{~mA}$			9	20					
			$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{I}=30 \mathrm{~mA}$	4.5 V		6	7					
			$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$	$1 \mathrm{O}=-30 \mathrm{~mA}$			7	12					
			$\mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}$	$1 \mathrm{O}=-30 \mathrm{~mA}$			7	15					
r range	On-state switch resistance over signal range $\ddagger \S$			$0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$ (see Figures 1 and 2)		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}$	1.65 V			140	Ω		
			$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}$			2.3 V			45				
			$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}$			3 V			18				
			$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}$			4.5 V			10				
$\Delta r_{\text {on }}$	Difference of on-state resistance between switches \ddagger			See Figure 1	$\mathrm{V}_{\mathrm{Bn}}=1.15 \mathrm{~V}$	$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}$	1.65 V		0.5		Ω		
			$\mathrm{V}_{\mathrm{Bn}}=1.6 \mathrm{~V}$		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}$	2.3 V		0.1					
			$\mathrm{V}_{\mathrm{Bn}}=2.1 \mathrm{~V}$		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}$	3 V		0.1					
			$\mathrm{V}_{\mathrm{Bn}}=3.15 \mathrm{~V}$		$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}$	4.5 V		0.1					
$r_{\text {on(flat) }}$	ON resistance flatness \ddagger ¢\|					$0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}$	1.65 V		110		Ω
			$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}$			2.3 V		26					
			$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}$			3 V		9					
			$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}$			4.5 V		4					
$1{ }_{\text {off }}{ }^{\text {a }}$	Off-state switch leakage current			$0 \leq \mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, (see Figure 3)			$\begin{aligned} & 1.65 \mathrm{~V} \\ & \text { to } 5.5 \mathrm{~V} \end{aligned}$			± 1	$\mu \mathrm{A}$		
							± 0.05	$\pm 1 \dagger$					
IS(on)	On-state switch leakage current			$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open (see Figure 4) } \end{aligned}$				5.5 V			± 1	$\mu \mathrm{A}$	
									$\pm 0.1 \dagger$				
${ }^{\text {IN }}$	Control input current			$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$			$\begin{aligned} & 0 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$			± 1	$\mu \mathrm{A}$		
							± 0.05	$\pm 1 \dagger$					
ICC	Supply current			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND				5.5 V		1	10	$\mu \mathrm{A}$	
$\Delta_{\text {I CC }}$	Supply-current change			$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$			5.5 V			500	$\mu \mathrm{A}$		
$\mathrm{C}_{\text {in }}$	Control input capacitance	S				5 V		2.7		pF			
C_{io} (off)	Switch input/output capacitance	Bn				5 V		5.2		pF			
$\mathrm{Cio}_{\text {(on) }}$	Switch input/output capacitance	Bn				5 V		17.3		pF			
		A					17.3						

$\dagger_{\mathrm{T}}^{\mathrm{A}}=25^{\circ} \mathrm{C}$
\ddagger Measured by the voltage drop between I/O pins at the indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A or B) ports.
§ Specified by design
II $\Delta r_{o n}=r_{o n(\max)}-r_{o n(\min)}$ measured at identical V_{CC}, temperature, and voltage levels.
\# This parameter is characterized, but not tested in production.
$\|$ Flatness is defined as the difference between the maximum and minimum values of ON resistance over the specified range of conditions.
${ }^{*}{ }^{\text {I }}$ off is the same as IS(off) (off-state switch leakage current).
analog switch characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	$\begin{gathered} \hline \text { FROM } \\ \text { (INPUT) } \end{gathered}$	TO (OUTPUT)	TEST CONDITIONS	V_{Cc}	TYP	UNIT
Frequency response (switch on) ${ }^{\dagger}$	A or Bn	Bn or A	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}_{\mathrm{in}}=\text { sine wave } \\ & \text { (see Figure } 6 \text {) } \end{aligned}$	1.65 V	300	MHz
				2.3 V	300	
				3 V	300	
				4.5 V	300	
Crosstalk (between switches) \ddagger	B1 or B2	B2 or B1	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}_{\mathrm{in}}=10 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Figure 7) } \end{aligned}$	1.65 V	-54	dB
				2.3 V	-54	
				3 V	-54	
				4.5 V	-54	
Feed-through attenuation (switch off) ${ }^{\ddagger}$	A or Bn	Bn or A	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{fin}_{\mathrm{in}}=10 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Figure 8) } \end{aligned}$	1.65 V	-57	dB
				2.3 V	-57	
				3 V	-57	
				4.5 V	-57	
Charge injection§	S	A	$\begin{aligned} & C_{L}=0.1 \mathrm{nF}, R_{L}=1 \mathrm{M} \Omega, \\ & \text { (see Figure 9) } \end{aligned}$	3.3 V	3	pC
				5 V	7	
Total harmonic distortion	A or Bn	Bn or A	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{Vp} \mathrm{p}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{f}_{\mathrm{in}}=600 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \text { (sine wave) } \\ & \text { (see Figure 10) } \end{aligned}$	1.65 V	0.1	\%
				2.3 V	0.025	
				3 V	0.015	
				4.5 V	0.01	

\dagger Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at output. Increase $\mathrm{f}_{\text {in }}$ frequency until dB meter reads -3 dB .
\ddagger Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at input.
\S Specified by design
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 5 and 11)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$t_{\text {pd }}{ }^{\dagger}$	A or Bn	Bn or A		2		1.2		0.8		0.3	ns
ten^{\ddagger}	S	Bn	7	24	3.5	14	2.5	7.6	1.7	5.7	ns
$\mathrm{t}_{\text {dis }}{ }^{\text {§ }}$			3	13	2	7.5	1.5	5.3	0.8	3.8	
${ }^{\text {tB-M }}{ }^{\text {I }}$			0.5		0.5		0.5		0.5		ns

$\dagger_{t_{p d}}$ is the slower of $t_{\text {PLH }}$ or $t_{P H L}$. The propagation delay is calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).
$\ddagger t_{\text {en }}$ is the slower of $t_{P Z L}$ or $t_{P Z H}$.
$\S t_{\text {dis }}$ is the slower of tPLZ or $^{\text {tPHZ }}$.
II Specified by design

SINGLE-POLE, DOUBLE-THROW ANALOG SWITCH

Figure 1. On-State Resistance Test Circuit

Figure 2. Typical $r_{o n}$ as a Function of Input Voltage $\left(V_{I}\right)$ for $V_{I}=0$ to $V_{C C}$

PARAMETER MEASUREMENT INFORMATION

Condition 1: $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}, \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$
Condition 2: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{O}}=\mathrm{GND}$
Figure 3. Off-State Switch Leakage-Current Test Circuit

Figure 4. On-State Switch Leakage-Current Test Circuit

PARAMETER MEASUREMENT INFORMATION

TEST	S1
${ }^{\text {tPLH/tPHL }}$	Open
tPLZ/tPZL	VLOAD GND

LOAD CIRCUIT

Vcc	INPUTS		V_{M}	VLOAD	C_{L}	R_{L}	V_{Δ}
	V_{1}	$\mathrm{t}_{\mathbf{r}} / \mathrm{t}_{\boldsymbol{f}}$					
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	V_{Cc}	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{cc}} / 2$	$2 \times V_{C C}$	50 pF	500Ω	0.3 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	V_{CC}	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{Cc}} / 2$	$2 \times \mathrm{V}$ CC	50 pF	500Ω	0.3 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	V_{Cc}	≤ 2.5 ns	$\mathrm{V}_{\mathrm{cc}} / 2$	$2 \times \mathrm{VCC}$	50 pF	500Ω	0.3 V
$5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	V CC	≤ 2.5 ns	$\mathrm{VCC}^{\prime} 2$	$2 \times \mathrm{VCC}$	50 pF	500Ω	0.3 V

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

$$
\begin{gathered}
\text { VOLTAGE WAVEFORMS } \\
\text { ENABLE AND DISABLE TIMES } \\
\text { LOW- AND HIGH-LEVEL ENABLING }
\end{gathered}
$$

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
D. The outputs are measured one at a time with one transition per measurement.
E. tpLZ and tPHZ are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tPZH are the same as ten.
G. tpLH and tpHL are the same as t_{pd}.
H. All parameters and waveforms are not applicable to all devices.

Figure 5. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

Figure 6. Frequency Response (Switch On)

Figure 7. Crosstalk (Between Switches)

SINGLE-POLE, DOUBLE-THROW ANALOG SWITCH

PARAMETER MEASUREMENT INFORMATION

Figure 8. Feed Through

Figure 9. Charge-Injection Test

PARAMETER MEASUREMENT INFORMATION

Figure 10. Total Harmonic Distortion

Figure 11. Break-Before-Make Internal Timing

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Leads 1, 2, 3 may be wider than leads 4, 5, 6 for package orientation.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-203

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. NanoFree ${ }^{T M}$ package configuration.

NOTES: D. This package is lead-free. Refer to the 6 YEP package (drawing 4204725) for tin-lead (SnPb).

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. NanoFree ${ }^{T M}$ package configuration.
D. This package is tin-lead (SnPb). Refer to the 6 YZP package (drawing 420741) for lead-free.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

