
- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- I_{off} Feature Supports Partial-Power-Down Mode Operation
- Supports 5-V V_{CC} Operation
- Package Options Include Plastic Small-Outline Transistor (DBV, DCK) Packages

NC - No internal connection

description

This single Schmitt-trigger inverter is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G14 device contains one inverter, and performs the Boolean function $Y = \overline{A}$. The device functions as an independent inverter, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals.

The SN74LVC1G14 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

	INPUT A	OUTPUT Y
ı	Н	L
ı	L	Н

logic symbol†

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated

PRODUCT PREVIEW

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	
Output voltage range, V _O (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DBV package	347°C/W
DCK package	389°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The value of V_{CC} is provided in the recommended operating conditions table.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

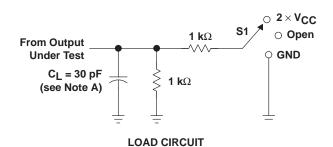
recommended operating conditions

			MIN	MAX	UNIT	
Vac	Supply voltage	Operating	1.65	5.5	V	
Vcc		Data retention only	1.5		V	
	High-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}			
\ _{\/} .		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
VIH	nigri-leveriniput voitage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2		V	
V _{IL}		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	0.7 × V _{CC}			
	Low-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		0.35 × V _{CC}		
\ \/		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
VIL		V _{CC} = 3 V to 3.6 V		0.8	V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$0.3 \times V_{CC}$		
٧ı	Input voltage		0	5.5	V	
Vo	Output voltage		0	VCC	V	
	High-level output current	V _{CC} = 1.65 V		-4	mA	
		V _{CC} = 2.3 V		-8		
lOH		V _{CC} = 3 V		-16		
		vCC = 3 v		-24		
		V _{CC} = 4.5 V		-32		
	Low-level output current	V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		8		
lOL		Voc = 3 V		16	mA	
		ACC = 3 A		24		
		V _{CC} = 4.5 V		32		
TA	Operating free-air temperature		-40	85	°C	

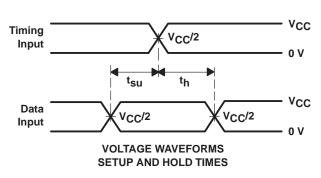
PRODUCT PREVIEW

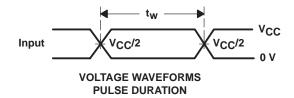
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

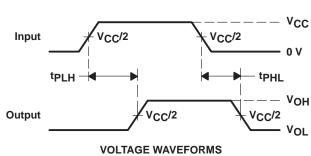
PARAMETER	TEST CONDITIONS	v _{cc}	MIN	TYPŤ	MAX	UNIT		
		1.65 V						
V _{T+}		2.3 V				V		
Positive-going input threshold voltage		3 V				V		
		4.5 V						
		1.65 V						
V _T _		2.3 V				V		
Negative-going input threshold voltage		3 V				V		
		4.5 V						
		1.65 V						
ΔVT		2.3 V				V		
Hysteresis (V _{T+} – V _T _)		3 V				V		
(114 11-)		4.5 V						
	I _{OH} = -100 μA	1.65 V to 4.5 V	V _{CC} -0.2					
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2					
Vall	$I_{OH} = -8 \text{ mA}$	2.3 V	1.7			V		
VOH	$I_{OH} = -16 \text{ mA}$	3 V	2.4			V		
	$I_{OH} = -24 \text{ mA}$	3 V	2.4					
	$I_{OH} = -32 \text{ mA}$	4.5 V	2.2			<u> </u>		
	I _{OL} = 100 μA	1.65 V to 4.5 V			0.2			
	I _{OL} = 4 mA	1.65 V			0.45			
V _{OL}	I _{OL} = 8 mA	2.3 V			0.7	V		
VOL.	I _{OL} = 16 mA	3 V			0.4	v		
	I _{OL} = 24 mA	3 V			0.55			
	$I_{OL} = 32 \text{ mA}$	4.5 V			0.55			
lį	$V_I = 5.5 \text{ V or GND}$	0 to 5.5 V			±5	μΑ		
l _{off}	V_I or $V_O = 5.5 V$	0			±10	μΑ		
Icc	$V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$	1.65 V to 5.5 V			10	μΑ		
ΔlCC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	3 V to 5.5 V			500	μΑ		
C _i	$V_I = V_{CC}$ or GND	0				pF		

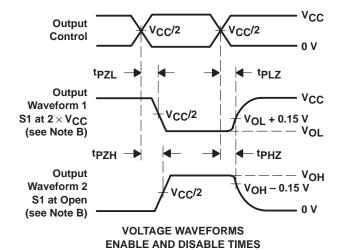

 $[\]dagger$ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 4)

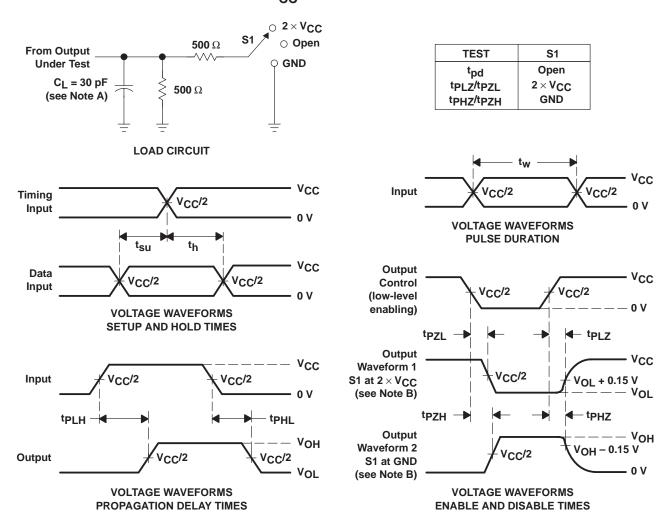

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y									ns


	PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	UNIT
	FARAMETER	TEST CONDITIONS	TYP	TYP	TYP	TYP	ONIT
Ср	d Power dissipation capacitance	f = 10 MHz				·	pF


PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.8 V \pm 0.15 V


TEST S₁ Open tpd tPLZ/tPZL $\mathbf{2} \times \mathbf{V_{CC}}$ tPHZ/tPZH **GND**

PROPAGATION DELAY TIMES

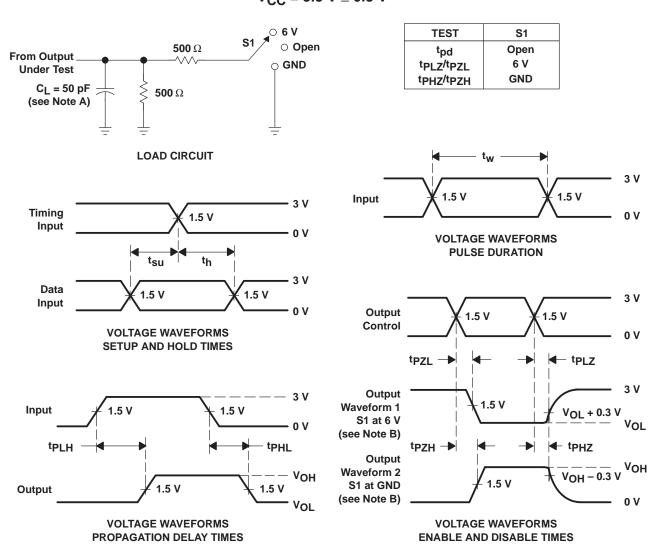

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpzL and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PRODUCT PREVIEW

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$



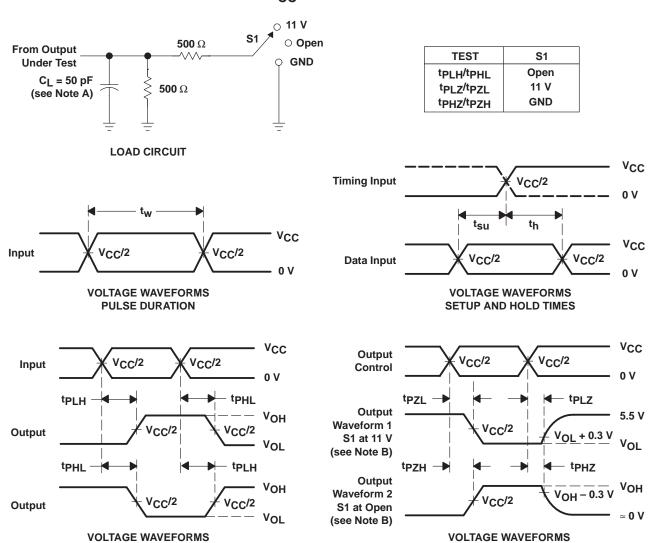
NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq 2.5 \text{ ns.}$
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. tpzL and tpzH are the same as ten.
 - G. tplH and tpHL are the same as tpd.


Figure 3. Load Circuit and Voltage Waveforms

ENABLE AND DISABLE TIMES

LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION V_{CC} = 5 V \pm 0.5 V

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq 2.5 \text{ ns.}$
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

PROPAGATION DELAY TIMES

INVERTING AND NONINVERTING OUTPUTS

- F. tpzL and tpzH are the same as ten.
- G. tpl H and tpHI are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated