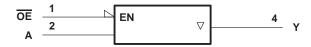
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- I_{off} Feature Supports Partial-Power-Down Mode Operation
- Supports 5-V V_{CC} Operation
- Package Options Include Plastic Small-Outline Transistor (DBV, DCK) Packages

description

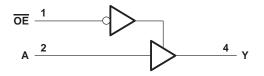
This bus buffer gate is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G125 features a single line driver with a 3-state output. The output is disabled when the output-enable (\overline{OE}) input is high.


To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74LVC1G125 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE								
INP	JTS	OUTPUT						
OE	Α	Y						
L	Н	Н						
L	L	L						
н	Х	Z						

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SN74LVC1G125

SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUTS

SCES223C - APRIL 1999 - REVISED FEBRUARY 2000

Copyright © 2000, Texas Instruments Incorporated

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
	Supplyveltage	Operating	1.65	5.5	v	
VCC	Supply voltage	Data retention only	1.5		v	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
\ <i>\</i>		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		v	
VIH	High-level input voltage	$V_{CC} = 3 V$ to 3.6 V	2		v	
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	$0.7 \times V_{CC}$			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
Ma		V _{CC} = 2.3 V to 2.7 V		0.7	V	
VIL	Low-level input voltage	$V_{CC} = 3 \vee \text{to } 3.6 \vee$		0.8	v	
		$V_{CC} = 4.5 V \text{ to } 5.5 V$		$0.3 \times V_{CC}$		
VI	Input voltage	-	0	5.5	V	
Vo	Output voltage		0	VCC	V	
		V _{CC} = 1.65 V		-4		
	High-level output current	V _{CC} = 2.3 V		-8	1	
ЮН		N/		-16	mA	
		V _{CC} = 3 V		-24		
		$V_{CC} = 4.5 V$		-32		
		V _{CC} = 1.65 V		4		
	Low-level output current	V _{CC} = 2.3 V		8		
IOL		N/		16	mA	
		V _{CC} = 3 V		24		
		$V_{CC} = 4.5 V$		32		
		V_{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V		20		
$\Delta t/\Delta v$	Input transition rise or fall rate	$V_{CC} = 3.3 V \pm 0.3 V$	10		ns/V	
		$V_{CC} = 5 V \pm 0.5 V$		5		
Тд	Operating free-air temperature	•	-40	85	°C	

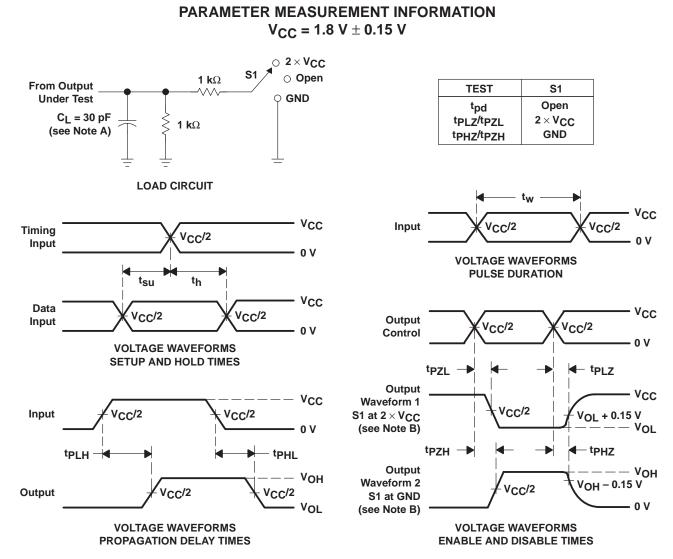
NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74LVC1G125 SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUTS SCES223C – APRIL 1999 – REVISED FEBRUARY 2000

electrical ch	naracteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise no						-	•	

PARAM	IETER	TEST CONDITIONS	Vcc	MIN	TYP [†]	MAX	UNIT	
		I _{OH} = -100 μA	1.65 V to 5.5 V	V _{CC} -0.1				
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2				
		$I_{OH} = -8 \text{ mA}$	2.3 V	1.9				
Vон		$I_{OH} = -16 \text{ mA}$		2.4			V	
		I _{OH} = -24 mA	3 V	2.3				
		I _{OH} = -32 mA	2 mA 4.5 V 3.8					
		I _{OL} = 100 μA	1.65 V to 5.5 V			0.1		
		I _{OL} = 4 mA	1.65 V			0.45		
		I _{OL} = 8 mA	2.3 V			0.3		
VOL		I _{OL} = 16 mA	2.1			0.4	V	
		I _{OL} = 24 mA	3 V			0.55		
		I _{OL} = 32 mA	4.5 V			0.55		
	or <mark>OE</mark> puts	VI = 5.5 V or GND	0 to 5.5 V			±5	μA	
l _{off}		$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$	0			±10	μA	
loz lcc		$V_{O} = 0$ to 5.5 V	3.6 V			10	μA	
		$V_{I} = 5.5 \text{ V or GND}, \qquad I_{O} = 0$	1.65 V to 5.5 V			10	μA	
ΔICC		One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	3 V to 5.5 V			500	μA	
Ci		$V_I = V_{CC}$ or GND	3.3 V				pF	

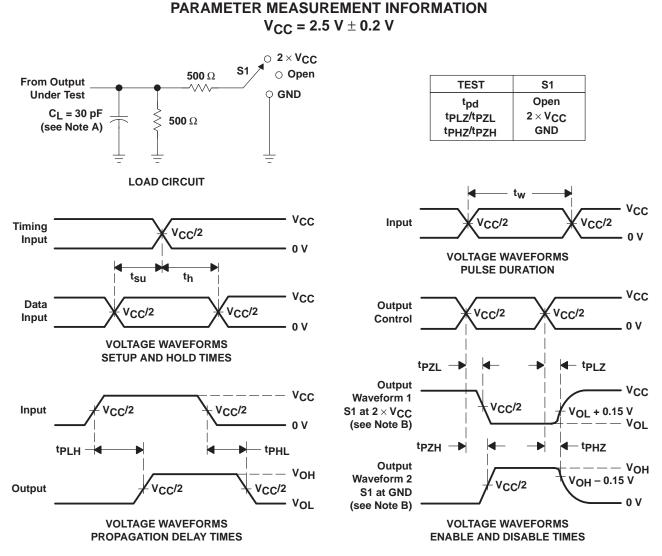
[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.


switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 4)

ſ	PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = ± 0.2		= V _{CC} ± 0.		= V _{CC} ± 0.	= 5 V 5 V	UNIT
		(INFOT)	(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	^t pd	A	Y									ns
	ten	OE	Y									ns
	^t dis	ŌĒ	Y									ns

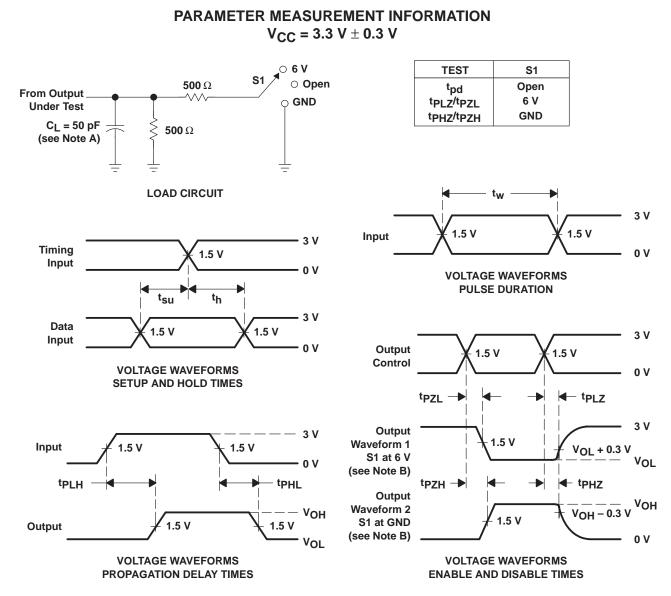
operating characteristics, $T_A = 25^{\circ}C$

Γ		PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	UNIT	
L	FARAIVIETER		TEOTOCINDITIONO	TYP	TYP	TYP	ТҮР		
	C _{pd}	Power dissipation capacitance	f = 10 MHz					pF	



- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLZ and tpHZ are the same as tdis.
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tpi H and tpHi are the same as tpd.

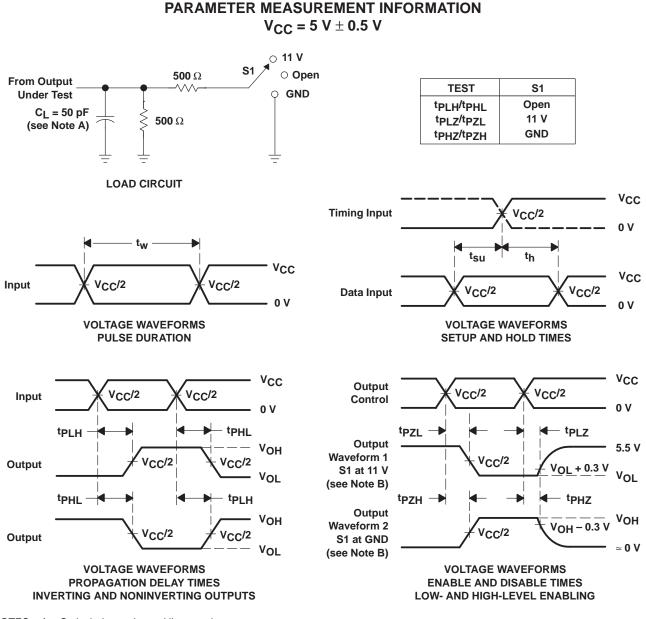
Figure 1. Load Circuit and Voltage Waveforms



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

 - E. tpLz and tpHz are the same as tdis. F. tpzL and tpzH are the same as ten.
 - G. tpl H and tpHI are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms



NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

NOTES: A. $C_{\mbox{L}}$ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2.5 ns. t_f ≤ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 4. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated