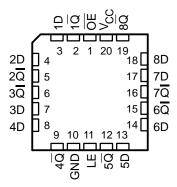
SN54AC533...J OR W PACKAGE SN74AC533...DB, DW, N, NS, OR PW PACKAGE

(TOP VIEW)

SCAS555B - NOVEMBER 1995 - REVISED SEPTEMBER 2002

- 2-V to 6-V V_{CC} Operation
- Inputs Accept Voltages to 6 V
- Max t_{pd} of 10.5 ns at 5 V
- 3-State Inverting Outputs Drive Bus Lines Directly
- Full Parallel Access for Loading

description/ordering information


The 'AC533 devices are octal transparent D-type latches with 3-state outputs. When the latch-enable (LE) input is high, the \overline{Q} outputs follow the complements of the data (D) inputs. When LE is taken low, the \overline{Q} outputs are latched at the inverse logic levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

 \overline{OE} does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

	•			
OE [U	20	v _{cc}
1Q [19	8Q
1D [3		18] 8D
2D 🛛	4		17]7D
2Q [16] 7Q
3 <mark>Q</mark> [6		15	6Q
3D [7		14] 6D
4D 🛛	8		13	5D
4Q [9		12] 5Q
GND [10		11	LE

SN54AC533 . . . FK PACKAGE (TOP VIEW)

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

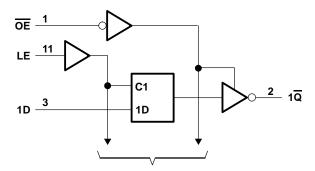
	I I									
TA	PACKAGE	<u>=</u> †	ORDERABLE PART NUMBER	TOP-SIDE MARKING						
	PDIP – N	Tube	SN74AC533N	SN74AC533N						
	SOIC - DW	Tube	SN74AC533DW	AC522						
–40°C to 85°C	3010 - 010	Tape and reel	PART NUMBERMARKINSN74AC533NSN74AC53SN74AC533DWAC533SN74AC533DWRAC533SN74AC533NSRAC533SN74AC533DBRAC533SN74AC533DWRAC533SN74AC533PWRAC533SNJ54AC533JSNJ54AC5SNJ54AC533WSNJ54AC5	AC555						
-40°C 10 85°C	SOP – NS	Tape and reel	SN74AC533NSR	AC533						
	SSOP – DB	Tape and reel	SN74AC533DBR	AC533						
	TSSOP – PW	Tape and reel	SN74AC533PWR	AC533						
	CDIP – J	Tube	SNJ54AC533J	SNJ54AC533J						
–55°C to 125°C	CFP – W	Tube	SNJ54AC533W	SNJ54AC533W						
	LCCC – FK	Tube	SNJ54AC533FK	SNJ54AC533FK						

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2002, Texas Instruments Incorporated

SCAS555B - NOVEMBER 1995 - REVISED SEPTEMBER 2002

	FUNCTION TABLE (each latch)								
	OUTPUT								
OE	LE	D	Q						
L	Н	Н	L						
L	н	L	н						
L	L	Х	\overline{Q}_0						
н	Х	Х	Z						

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1) Output voltage range, V_O (see Note 1) Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_C$ Continuous output current, I_O ($V_O = 0$ to V_{CC}) Continuous current through V_{CC} or GND Package thermal impedance, θ_{JA} (see Note 2	2): DB package DW package N package N package	$\begin{array}{ccc} -0.5 \ \text{V to } \ \text{V}_{\text{CC}} + 0.5 \ \text{V} \\ -0.5 \ \text{V to } \ \text{V}_{\text{CC}} + 0.5 \ \text{V} \\ \pm 20 \ \text{mA} \\ - \pm 20 \ \text{mA} \\ - \pm 50 \ \text{mA} \\ - \pm 200 \ \text{mA} \end{array}$
Storage temperature range, T _{stg}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCAS555B - NOVEMBER 1995 - REVISED SEPTEMBER 2002

recommended operating conditions (see Note 3)

			SN54A	C533	SN74A	C533	UNIT
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		2	6	2	6	V
		V _{CC} = 3 V	2.1		2.1		
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15		3.15		V
		V _{CC} = 5.5 V	3.85		3.85		
		$V_{CC} = 3 V$		0.9		0.9	
VIL	Low-level input voltage	$V_{CC} = 4.5 V$		1.35		1.35	V
		V _{CC} = 5.5 V		1.65		1.65	
VI	Input voltage		0	Vcc	0	VCC	V
VO	Output voltage		0	VCC	0	VCC	V
		$V_{CC} = 3 V$	201	-12		-12	
ЮН	High-level output current	$V_{CC} = 4.5 V$	PAC STA	-24		-24	mA
		V _{CC} = 5.5 V		-24		-24	
		$V_{CC} = 3 V$		12		12	
IOL	Low-level output current	$V_{CC} = 4.5 V$		24		24	mA
		V _{CC} = 5.5 V		24		24	
$\Delta t / \Delta v$	Input transition rise or fall rate			8		8	ns/V
Τ _Α	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vee	Т	_A = 25°C		SN54A	C533	SN74AC533		UNIT
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP I	MAX	MIN	MAX	MIN	MAX	UNIT
	I _{OH} = –50 μA	3 V	2.9			2.9		2.9		
		4.5 V	4.4			4.4		4.4		
Vou		5.5 V	5.4			5.4		5.4		V
VOH	$I_{OH} = -12 \text{ mA}$	3 V	2.56			2.4	W	2.46		v
		4.5 V	3.86			3.7	'VIE	3.76		
	I _{OH} = -24 mA	5.5 V	4.86			4.7	R	4.76		
	I _{OL} = 50 μA	3 V			0.1		0.1		0.1	V
		4.5 V			0.1	nc	0.1		0.1	
Mar		5.5 V			0.1	30	0.1		0.1	
VOL	I _{OL} = 12 mA	3 V			0.36	2	0.5		0.44	v
		4.5 V			0.36		0.5		0.44	
	I _{OL} = 24 mA	5.5 V			0.36		0.5		0.44	
I _{OZ}	$V_{O} = V_{CC} \text{ or } GND$	5.5 V		±	±0.25		±5		±2.5	μA
lj	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			4		80		40	μA
Ci	$V_I = V_{CC}$ or GND	5 V		4.5						pF

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCAS555B - NOVEMBER 1995 - REVISED SEPTEMBER 2002

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C		SN54AC533		SN74AC533		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tw	Pulse duration, LE high	6		8	EW	6.5		ns
t _{su}	Setup time, data before LE \downarrow	5.5		7.5	EN	6		ns
th	Hold time, data after LE \downarrow	1.5		2.5		1		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

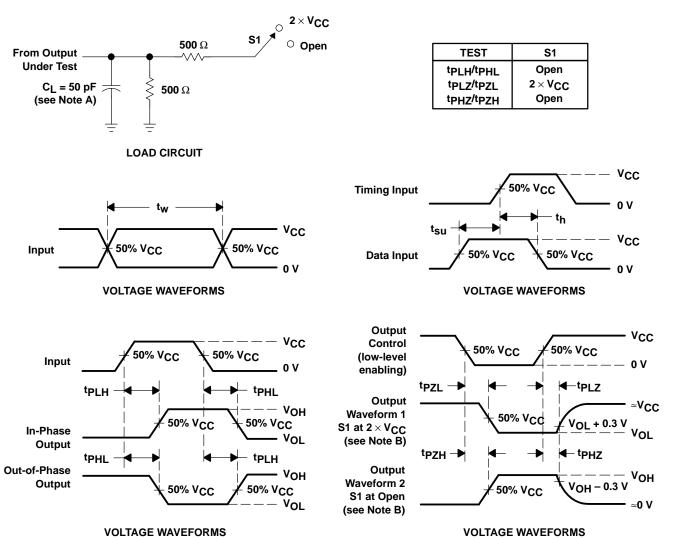
		T _A = 2	25°C	SN54AC533	SN74AC533		UNIT
		MIN	MAX	MIN MAX	MIN	MAX	UNIT
tw	Pulse duration, LE high	4.5		6.5	5		ns
t _{su}	Setup time, data before LE \downarrow	4		6	4.5		ns
^t h	Hold time, data after LE \downarrow	1.5		2.5	1		ns

switching characteristics over recommended operating free-air temperature V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1) range,

PARAMETER	FROM	то	T _A = 2	25°C	SN54A	C533	SN74A	C533	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	D	Q	2	14	1	17.5	1.5	16	ns
^t PHL	D	Q	2	13	1	16	1.5	14.5	115
^t PLH	LE	Q	2	14.5	1	18	1.5	16.5	ns
^t PHL		LL	Q	2	13	1	16	1.5	14.5
^t PZH	OE	Q	2	12.5	ন্দ	15.5	1.5	14	ns
^t PZL	ÛE	Q	2	12.5	Q01	15.5	1.5	14	115
^t PHZ	ŌĒ	Q	2	13	4 1	16	1.5	14.5	200
^t PLZ	UE	Ŷ	2	13	1	16	1.5	14.5	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 2	25°C	SN54A	C533	SN74A	C533	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	D	Q	2	10	1	12.5	1.5	11	ns
^t PHL	В	Q	2	9.5	1	12	1.5	10.5	115
^t PLH	LE	Q	2	10.5	1	13	1.5	11.5	ns
^t PHL	LL	Q	2	10	1.0	13	1.5	11	115
^t PZH	OE	Q	2	9.5	(ə)	12	1.5	10.5	ns
^t PZL	UE	Q	2	9.5	\tilde{q}	12	1.5	10.5	115
^t PHZ	OE	Q	2	10	x 1	12.5	1.5	11	
^t PLZ	UE	Ŷ	2	10	1	12.5	1.5	11	ns


operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER		IS	TYP	UNIT
C _{pd}	Power dissipation capacitance	$C_L = 50 \text{ pF}, \qquad f = 1 \text{ MI}$	Hz	40	pF

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCAS555B - NOVEMBER 1995 - REVISED SEPTEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated