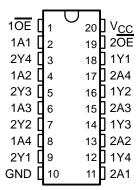
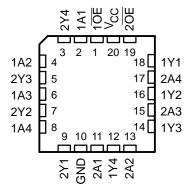
SCAS512D - JUNE 1995 - REVISED SEPTEMBER 2002

- 2-V to 6-V V_{CC} Operation
- Inputs Accept Voltages to 6 V
- Max tpd of 6.5 ns at 5 V


description/ordering information

These octal buffers and line drivers are designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers transmitters.


The 'AC240 devices are organized as two 4-bit buffers/drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

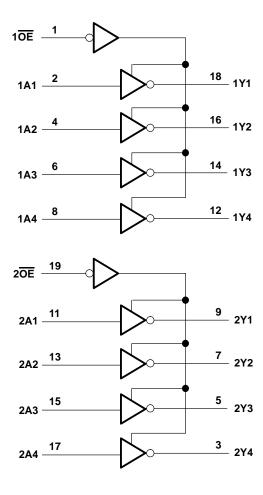
SN54AC240 . . . J OR W PACKAGE SN74AC240 . . . DB, DW, N, NS, OR PW PACKAGE (TOP VIEW)

SN54AC240 . . . FK PACKAGE (TOP VIEW)

ORDERING INFORMATION

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N Tube		SN74AC240N	SN74AC240N
_40°C to 85°C	SOIC - DW	Tube	SN74AC240DW	AC240
	30IC - DW	Tape and reel	SN74AC240DWR	AC240
=40°C t0 85°C	SOP - NS	Tape and reel	SN74AC240NSR	AC240
	SSOP – DB	Tape and reel	SN74AC240DBR	AC240
	TSSOP – PW	Tape and reel	SN74AC240PWR	AC240
	CDIP – J	Tube	SNJ54AC240J	SNJ54AC240J
–55°C to 125°C	CFP – W	Tube	SNJ54AC240W	SNJ54AC240W
	LCCC – FK	Tube	SNJ54AC240FK	SNJ54AC240FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE (each buffer)

INPU	JTS	OUTPUT
OE	Α	Y
L	Н	L
L	L	Н
Н	Χ	Z

logic diagram (positive logic)

SCAS512D – JUNE 1995 – REVISED SEPTEMBER 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		–0.5 V to 7 V
Input voltage range, V _I (see Note 1)		-0.5 V to V _{CC} + 0.5 V
Output voltage range, VO (see Note 1)		$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)		±20 mA
Output clamp current, IOK (VO < 0 or VO > VCO	c)	±20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})		
Continuous current through V _{CC} or GND		
Package thermal impedance, θ_{JA} (see Note 2):	: DB package	70°C/W
	DW package	58°C/W
	N package	69°C/W
	NS package	60°C/W
	PW package	83°C/W
Storage temperature range, T _{stq}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

		SN54A	C240	SN74A	UNIT	
		MIN	MAX	MIN	MAX	UNII
Supply voltage		2	6	2	6	V
	V _{CC} = 3 V	2.1		2.1		
High-level input voltage	$V_{CC} = 4.5 \text{ V}$	3.15		3.15		V
	V _{CC} = 5.5 V	3.85		3.85		
	V _{CC} = 3 V		0.9		0.9	
Low-level input voltage	V _{CC} = 4.5 V		1.35		1.35	V
	V _{CC} = 5.5 V		1.65		1.65	
Input voltage		0	VCC	0	VCC	V
Output voltage		0	VCC	0	Vcc	V
	V _{CC} = 3 V		-12		-12	
High-level output current	$V_{CC} = 4.5 \text{ V}$		-24		-24	mA
	V _{CC} = 5.5 V		-24		-24	
	V _{CC} = 3 V		12		12	
Low-level output current	V _{CC} = 4.5 V		24		24	mA
V _{CC} = 5.5 V			24		24	
Input transition rise or fall rate			8		8	ns/V
Operating free-air temperature		-55	125	-40	85	°C
	High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current Input transition rise or fall rate	High-level input voltage	Supply voltage	Supply voltage 2 6 VCC = 3 V 2.1 VCC = 4.5 V 3.15 VCC = 5.5 V 3.85 Low-level input voltage VCC = 3 V 0.9 VCC = 4.5 V 1.35 Input voltage 0 VCC Output voltage 0 VCC High-level output current VCC = 3 V -12 VCC = 4.5 V -24 VCC = 3 V 12 Low-level output current VCC = 4.5 V 24 VCC = 4.5 V 24 VCC = 5.5 V 24 Input transition rise or fall rate 8	MIN MAX MIN MAX MIN MAX Supply voltage MIN MAX MI	MIN MAX MIN MAX Supply voltage VCC = 3 V

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN54AC240, SN74AC240 OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCAS512D – JUNE 1995 – REVISED SEPTEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	٦,,	T,	Δ = 25°C	;	SN54AC240		SN74AC240		UNIT	
		TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII	
			3 V	2.9			2.9		2.9			
		I _{OH} = -50 μA	4.5 V	4.4			4.4		4.4			
			5.5 V	5.4			5.4		5.4			
\/o		I _{OH} = -12 mA	3 V	2.56			2.4		2.46		V	
VOH			4.5 V	3.86			3.7		3.76		V	
		I _{OH} = -24 mA	5.5 V	4.86			4.7		4.76			
		I _{OH} = -50 mA [†]	5.5 V				3.85					
		I _{OH} = -75 mA [†]	5.5 V						3.85			
			3 V			0.1		0.1		0.1	V	
		Ι _Ο L = 50 μΑ	4.5 V			0.1		0.1		0.1		
			5.5 V			0.1		0.1		0.1		
V		I _{OL} = 12 mA	3 V			0.36		0.5		0.44		
VOL		1- 04 mA	4.5 V			0.36		0.5		0.44		
		I _{OL} = 24 mA	5.5 V			0.36		0.5		0.44		
		I _{OL} = 50 mA [†]	5.5 V					1.65				
		I _{OL} = 75 mA [†]	5.5 V							1.65		
1.	Data inputs	V _I = V _{CC} or GND	5.5 V			±0.1		±1		±1		
Ħ	Control inputs	V _I = V _{CC} or GND	5.5 V			±0.1		±1		±1	μΑ	
loz‡		$V_O = V_{CC}$ or GND, $V_{I(OE)} = V_{IL}$ or V_{IH}	5.5 V			±0.25		±5		±2.5	μΑ	
ICC		$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		80		40	μΑ	
Ci		V _I = V _{CC} or GND	5 V		2.5						pF	

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T,	4 = 25°C	;	SN54A	C240	SN74A	C240	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	Α	V	1.5	6	8	1	11	1	9	ns
^t PHL	Α	,	1.5	5.5	8	1	10.5	1	8.5	115
^t PZH	ŌĒ	V	1.5	6	10.5	1	11.5	1	11	20
t _{PZL}	OE	Ť	1.5	7	10	1	13	1	11	ns
^t PHZ	ŌĒ	V	1.5	7	10	1	12.5	1	10.5	no
^t PLZ	J OE	ľ	1.5	7.5	10.5	1	13.5	1	11.5	ns

[‡] For I/O ports, the parameter IO7 includes the input leakage current.

VOLTAGE WAVEFORMS

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T,	գ = 25°C	;	SN54A	C240	SN74A	C240	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	٨	Y	1.5	4.5	6.5	1	8.5	1	7	ns
^t PHL	А		1.5	4.5	6	1	8	1	6.5	110
^t PZH	<u> -</u>	>	1.5	5	7	1	9	1	8	no
^t PZL	ŌĒ	Ť	1.5	5.5	8	1	10.5	1	8.5	ns
^t PHZ	ŌĒ		2.5	6.5	9	1	10.5	1	9.5	20
t _{PLZ}	OE .	r	2	6.5	9	1	11	1	9.5	ns

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per buffer/driver	$C_L = 50 \text{ pF}, f = 1 \text{ MHz}$	45	pF

PARAMETER MEASUREMENT INFORMATION O 2×VCC **TEST** S1 $\mathbf{500}\,\Omega$ tPLH/tPHL Open From Output 2×V_{CC} tPLZ/tPZL **Under Test** tPHZ/tPZH Open C_L = 50 pF 500 Ω (see Note A) Output **LOAD CIRCUIT** VCC Control 50% V_{CC} 50% V_{CC} (low-level enabling) -tpLZ tpzL → VCC Output ≈VCC 50% V_{CC} 50% V_{CC} Input Waveform 1 50% V_CC S1 at $2 \times V_{CC}$ ^tPLH (see Note B) **tPHL** tPZH → **⋖**−tPHZ Output - V_{ОН} Waveform 2 V_{OH} - 0.3 V 50% V_{CC} 50% V_{CC} 50% V_{CC} Output S1 at Open VOL (see Note B)

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

VOLTAGE WAVEFORMS

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated