PRELIMINARY DATA SHEET

PHTOCOUPLER PS8741

FOR OPTICAL DAA, HIGH LINEAR 16-PIN SOP PHOTOCOUPLER

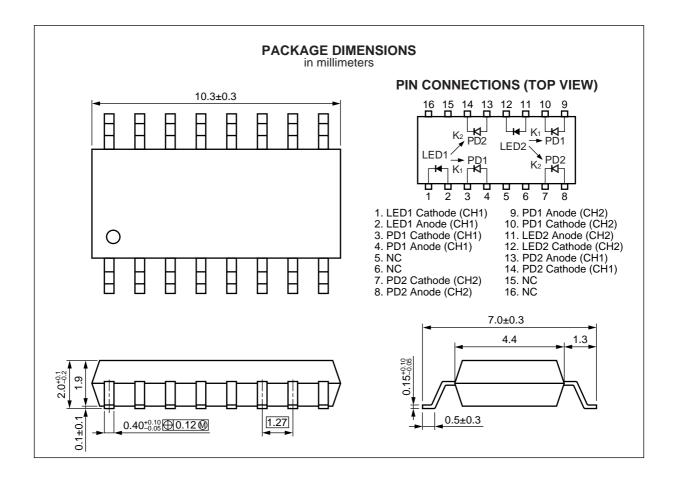
-NEPOC[™] Series-

DESCRIPTION

The PS8741 is an optically coupled isolator containing a GaAs LED on the light emitting side (input side) and two photodiodes on the output side.

It is suitable for analog control applications such as PCMCIA card, modem, voice telephony and fax machines.

FEATURES


- For PCMCIA
- Small and thin package (16-pin SOP: 255 mil, Pin pitch = 1.27 mm, Height = 2.1 mm)
- High transfer gain linearity (∆K₃ = 1 % MAX.)
- High isolation voltage (BV = 1 500 Vr.m.s.)
- Ordering number of taping product: PS8741-F3, F4

APPLICATIONS

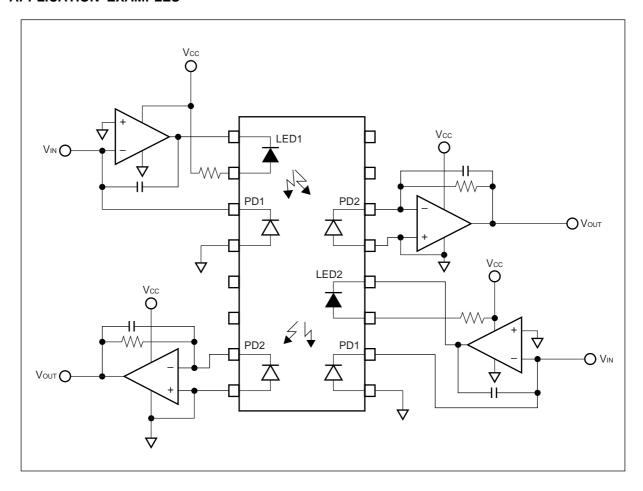
- PCMCIA card
- Notebook PC, PDA
- Modem
- · Telephone, FAX

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified)

Parameter		Symbol	Ratings	Unit	
Diode	Forward Current (DC)	lF	50	mA	
	Reverse Voltage	VR	3	V	
	Power Dissipation	Po	80	mW/ch	
	Peak Forward Current [™]	I FP	0.5	Α	
Detector	Reverse Voltage	VR	20	V	
	Power Dissipation	Pc	50	mW/ch	
Isolation Voltage ^{*2}		BV	1 500	Vr.m.s.	
Total Power Dissipation		Рт	180	mW	
Operating Ambient Temperature		TA	-40 to +85	°C	
Storage Temperature		T _{stg}	-40 to +100	°C	


^{*1} PW = 100 μ s, Duty Cycle = 1 %

ELECTRICAL CHARACTERISTICS (TA = 25 °C)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	VF	I _F = 5 mA		1.1	1.4	V
	Reverse Current	lR	V _R = 3 V			10	μΑ
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz		30		pF
Detector	Dark Current	ΙD	Vcc = 5 V, I _F = 0 mA		1	25	nA
Coupled	Servo Gain (IPD1/IF)	K 1	Vcc = 5 V, I _F = 2 mA	0.3	1.0	1.8	%
	Forward Gain (IPD2/IF)	K ₂		0.3	1.0	1.8	
	Transfer Gain (K ₂ /K ₁)	К з	Vcc = 5 V, I _F = 2 mA	0.75	1.0	1.25	
	Transfer Gain Linearity	∆K₃	Vcc = 5 V, I _F = 2 to 10 mA		0.3	1	%
	K ₃ Temperature Coefficient	ΔK3/ΔT	Vcc = 5 V, I _F = 2 to 10 mA		0.005		%/°C

^{*2} AC voltage for 1 minute at $T_A = 25$ °C, RH = 60 % between input and output

APPLICATION EXAMPLES

USAGE CAUTIONS

1. Since this product is sensitive to electro-static discharge, take anti-ESD measures, such as using a wrist strap, while handling it.

2. Recommended Soldering Conditions

(1) Handling (Soldering iron)

Temperature 260 °C or belowTime 5 seconds or less

• Leave more than 1.0 mm from the lead roof

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine

content of 0.2 Wt % is recommended.)

(2) Infrared reflow soldering

• Peak reflow temperature 235 °C (Package surface temperature)

• Time of temperature higher than 210 °C 30 seconds or less

• Preheating conditions 120 to 160 °C (Package surface temperature),

60 to 90 seconds

• Number of reflows One

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt % is recommended.)

3. Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

NEC

PS8741

[MEMO]

NEC PS8741

[MEMO]

CAUTION

Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.

NEPOC is a trademark of NEC Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8