MPSA₁₈ ## **NPN General Purpose Amplifier** This device is designed for low noise, high gain, applications at collector currents from 1μ A to 50 mA. Sourced from Process 07. See 2N5088 for characteristics. ## **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CEO} | Collector-Emitter Voltage | 45 | V | | V _{CBO} | Collector-Base Voltage | 45 | V | | V _{EBO} | Emitter-Base Voltage | 6.5 | V | | Ic | Collector Current - Continuous | 100 | mA | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ### **Thermal Characteristics** TA = 25°C unless otherwise noted | Symbol | Characteristic | Max | Units | |------------------|--|------------|-------------| | | | MPSA18 | | | P_D | Total Device Dissipation Derate above 25°C | 625
5.0 | mW
mW/∘C | | R _{θJC} | Thermal Resistance, Junction to Case | 83.3 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 200 | °C/W | # NPN General Purpose Amplifier (continued) | Electrical Characteristics TA = 25°C unless otherwise noted | | | | | | | | |---|--------------------------------------|---|--------------------------|------------|-------|--|--| | Symbol | Parameter | Test Conditions | Min | Max | Units | | | | | | | • | | | | | | OFF CHA | RACTERISTICS | | | | | | | | $V_{(BR)CEO}$ | Collector-Emitter Breakdown Voltage* | $I_C = 10 \text{ mA}, I_B = 0$ | 45 | | V | | | | V _{(BR)CBO} | Collector-Base Breakdown Voltage | $I_C = 100 \mu A, I_E = 0$ | 45 | | V | | | | V _{(BR)EBO} | Emitter-Base Breakdown Voltage | $I_E = 10 \mu\text{A}, I_C = 0$ | 6.5 | | V | | | | I _{CBO} | Collector Cutoff Current | $V_{CB} = 30 \text{ V}, I_{E} = 0$ | | 50 | nA | | | | h _{FE} | DC Current Gain | $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{mA}$ | 400
500
500
500 | 1500 | V | | | | $V_{CE(Sat)}$ | Collector-Emitter Saturation Voltage | $I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$
$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$ | | 0.2
0.3 | V | | | | V _{BE(on)} | Base-Emitter On Voltage | $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ | | 0.7 | V | | | | | IGNAL CHARACTERISTICS | | 1 | | | | | | C _{cb} | Collector-Base Capacitance | $V_{CB} = 5.0 \text{ V}, f = 1.0 \text{ MHz}$ | | 3.0 | pF | | | | C _{eb} | Emitter-Base Capacitance | $V_{EB} = 0.5 \text{ V}, f = 1.0 \text{ MHz}$ | | 6.5 | pF | | | | f _T | Current Gain - Bandwidth Product | $I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$
f = 100 MHz | 100 | | MHz | | | | NF | Noise Figure | $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A},$
$R_{S} = 10 \text{k}\Omega, f = 1.0 \text{kHz},$ | | 1.5 | dB | | | ^{*}Pulse Test: Pulse Width $\leq 300~\mu s$, Duty Cycle $\leq 2.0\%$