

LM2592HV SIMPLE SWITCHER®Power Converter 150 kHz 2A Step-Down Voltage Regulator

General Description

The LM2592HV series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 2A load with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5V, and an adjustable output version.

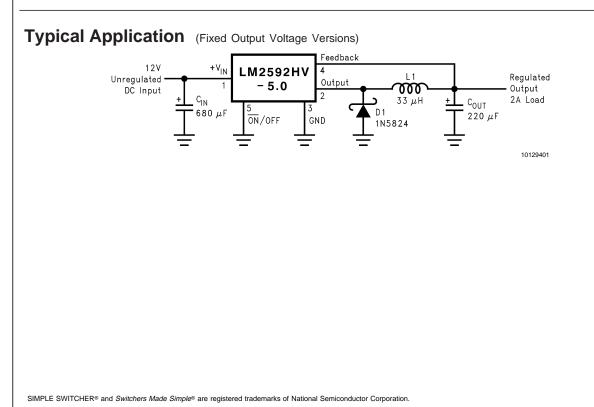
This series of switching regulators is similar to the LM2593HV, but without some of the supervisory and performance features of the latter.

Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation[†], improved line and load specifications and a fixed-frequency oscillator.

The LM2592HV operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 5-lead TO-220 package with several different lead bend options, and a 5-lead TO-263 Surface mount package.

Other features include a guaranteed $\pm 4\%$ tolerance on output voltage under all conditions of input voltage and output load conditions, and $\pm 15\%$ on the oscillator frequency. External shutdown is included, featuring typically 90 µA standby current. Self protection features include a two stage

current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.


Features

- 3.3V, 5V, and adjustable output versions
- Adjustable version output voltage range, 1.2V to 57V ±4% max over line and load conditions
- Guaranteed 2A output load current
- Available in 5-pin TO-220 and TO-263 (surface mount) Package
- Input voltage range up to 60V
- 150 kHz fixed frequency internal oscillator
- On/Off control
- Low power standby mode, I_Q typically 90 μA
- High Efficiency
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
 - On-card switching regulators
 - Positive to Negative converter

Note: † Patent Number 5,382,918.

LM2592HV SIMPLE SWITCHER Power Converter 150 kHz 2A Step-Down Voltage Regulator

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Maximum Supply Voltage (V _{IN})	63V
ON/OFF Pin Voltage	$-0.3 \le V \le +25V$
Feedback Pin Voltage	$-0.3 \le V \le +25V$
Output Voltage to Ground	
(Steady State)	-1V
(Sleady Slale)	-1 V
Power Dissipation	Internally limited
(, ,	

Human Body Model (Note 2)	2 kV
Lead Temperature	
S Package	
Vapor Phase (60 sec.)	+215°C
Infrared (10 sec.)	+245°C
T Package (Soldering, 10 sec.)	+260°C
Maximum Junction Temperature	+150°C

Operating Conditions

Temperature Range	$-40^{\circ}C \le T_{J} \le +125^{\circ}C$
Supply Voltage	4.5V to 60V

LM2592HV-3.3 Electrical Characteristics

Specifications with standard type face are for $T_J = 25$ °C, and those with **boldface type** apply over **full Operating Temperature Range.**

Symbol	Parameter	Conditions	LM2592HV-3.3		Units			
			Тур	Limit	(Limits)			
			(Note 3)	(Note 4)				
SYSTEM	SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1							
V _{OUT}	Output Voltage	$4.75V \le V_{IN} \le 60V, \ 0.2A \le I_{LOAD} \le 2A$	3.3		V			
				3.168/ 3.135	V(min)			
				3.432/ 3.465	V(max)			
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 2A$	76					

LM2592HV-5.0 Electrical Characteristics

Specifications with standard type face are for $T_J = 25$ °C, and those with **boldface type** apply over **full Operating Temperature Range.**

Symbol	Parameter	Conditions	LM25	Units	
			Тур	Limit	(Limits)
			(Note 3)	(Note 4)	
SYSTEM F	PARAMETERS (Note 5)	Test Circuit Figure 1			
V _{OUT}	Output Voltage	$7V \le V_{IN} \le 60V, 0.2A \le I_{LOAD} \le 2A$	5		V
				4.800/ 4.750	V(min)
				5.200/ 5.250	V(max)
η	Efficiency	$V_{IN} = 12V, I_{I,OAD} = 2A$	81		%

LM2592HV-ADJ Electrical Characteristics

Specifications with standard type face are for $T_J = 25^{\circ}C$, and those with **boldface type** apply over **full Operating Temperature Range**.

Symbol	Parameter	Conditions	LM2592HV-ADJ		I2592HV-ADJ Units			
			Тур	Limit	(Limits)			
			(Note 3)	(Note 4)				
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1								
V _{FB}	Feedback Voltage	$4.5V \le V_{IN} \le 60V, 0.2A \le I_{LOAD} \le 2A$	1.230		V			
		V _{OUT} programmed for 3V. Circuit of <i>Figure 1</i> .		1.193/ 1.180	V(min)			
				1.267/ 1.280	V(max)			
η	Efficiency	$V_{IN} = 12V, V_{OUT} = 3V, I_{LOAD} = 2A$	75		%			

All Output Voltage Versions Electrical Characteristics

Symbol	Parameter	Conditions	LM2592HV-XX		Units
			Тур	Limit	(Limits)
			(Note 3)	(Note 4)	
DEVICE F	PARAMETERS				
I _b	Feedback Bias Current	Adjustable Version Only, V _{FB} = 1.3V	10		nA
				50/ 100	nA (max)
f _O	Oscillator Frequency	(Note 6)	150		kHz
				127/ 110	kHz(min)
				173/ 173	kHz(max)
V _{SAT}	Saturation Voltage	I _{OUT} = 2A (Note 7) (Note 8)	1.10		V
				1.3/ 1.4	V(max)
DC	Max Duty Cycle (ON)	(Note 8)	100		%
	Min Duty Cycle (OFF)	(Note 9)	0		
I _{CLIM}	Switch current Limit	Peak Current, (Note 7) (Note 8)	3.0		A
				2.4/ 2.3	A(min)
				3.7/ 4.0	A(max)
I _L	Output Leakage Current	(Note 7) (Note 9) (Note 10) Output = 0V		50	µA(max)
		Output = -1V	5		mA
				30	mA(max)
Ι _Q	Operating Quiescent	SD /SS Pin Open (Note 9)	5		mA
	Current			10	mA(max)
I _{STBY}	Standby Quiescent	\overline{SD} /SS pin = 0V (Note 10)	90		μA
	Current			200/ 250	µA(max)
θ_{JC}	Thermal Resistance	TO220 or TO263 Package, Junction to Case	2		°C/W
θ_{JA}		TO220 Package, Juncton to Ambient (Note 11)	50		°C/W
θ_{JA}		TO263 Package, Juncton to Ambient (Note 12)	50		°C/W
θ_{JA}		TO263 Package, Juncton to Ambient (Note 13)	30		°C/W
θ_{JA}		TO263 Package, Juncton to Ambient (Note 14)	20		°C/W
ON/OFF (CONTROL Test Circuit Figure 1				
	ON /OFF Pin Logic Input		1.3		V
V _{IH}	Threshold Voltage	Low (Regulator ON)		0.6	V(max)
V _{IL}		High (Regulator OFF)		2.0	V(min)
I _H	ON /OFF Pin Input Current	V _{LOGIC} = 2.5V (Regulator OFF)	5		μA
				15	µA(max)
ΙL		V _{LOGIC} = 0.5V (Regulator ON)	0.02		μA
				5	µA(max)

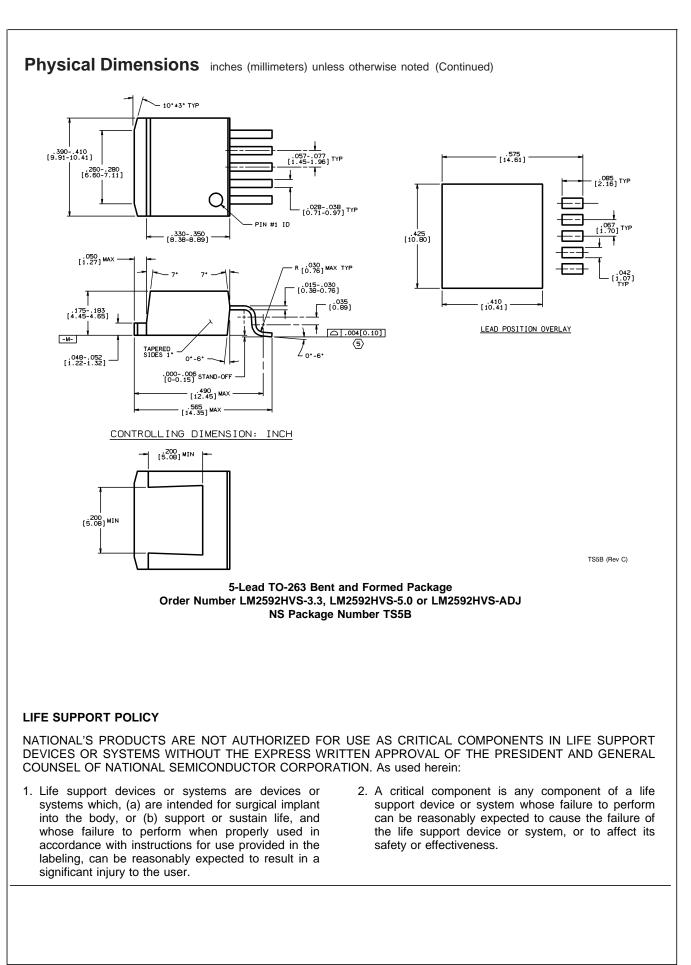
Specifications with standard type face are for $T_J = 25$ °C, and those with **boldface type** apply over **full Operating Temperature Range**. Unless otherwise specified, $V_{IN} = 12V$ for the 3.3V, 5V, and Adjustable version. $I_{LOAD} = 500$ mA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. **Note 2:** The human body model is a 100 pF capacitor discharged through a 1.5k resistor into each pin.

Note 3: Typical numbers are at 25°C and represent the most likely norm.

Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Note 5: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2592HV is used as shown in the *Figure 1* test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.


Note 6: The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current overload.

Note 7: No diode, inductor or capacitor connected to output pin.

Note 8: Feedback pin removed from output and connected to 0V to force the output transistor switch ON.

Note 9: Feedback pin removed from output and connected to 12V for the 3.3V, 5V, and the ADJ. version to force the output transistor switch OFF.

Note 10: $V_{IN} = 60V.$

