

SANYO Semiconductors **DATA SHEET**

LB11885 — Monolithic Digital IC Three-in-One Motor Driver for Portable VCR

Overview

LB11885 is a three-in-one motor driver for portable VCR.

Features

• Capstan motor drive unit

3-phase, 120 degrees full conducting, direct PWM drive

Built in PWM oscillator

Current limiter (It is fixed internally and setup externally.)

Forward/reverse rotation

2 levels FG amplifier (Built-in gain resistor)

Control amplifier output pin

• Drum motor drive unit

3-phase, 120 degrees full conducting soft switching sensorless drive

FG sensorless function

2 levels PG amplifier

FG and PG mixing output (Separated output is also possible.)

• Loading motor drive unit

H-bridge forward/reverse rotation

Motor voltage switch

Short brake

Input control for 3 values

• Common unit

Over-heat protection function (Thermal Shut Down)

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
IC power source voltage	VREG max		6.5	V
Motor power source 1	C_V _{CC} max		30.0	V
Motor power source 2	D_V _{CC} max		30.0	V
Motor power source 3	L_V _{CC} max		30.0	V
Applied input voltage	VI1 max		-0.3 to V _{CC} +0.3	V
Motor output current	IC_V _{CC} max		1.2	А
Motor output current	ID_V _{CC} max		0.75	Α
Motor output current	IL_V _{CC} max		0.8	А
Allowable internal power dissipation	Pd max1	IC alone	0.85	W
	Pd max2			W
Pin voltage range 1	VPIN max1	CRSS, CRSP, CUOUT, CVOUT, CWOUT	CMGND-VF to CV _{CC} +VF	V
Pin voltage range 2	VPIN max2	DRS, DCOM, DUOUT, DVOUT, DWOUT	DMGND-VF to DV _{CC} +VF	V
Pin voltage range 3	VPIN max3	LOUT1, LOUT2	LGND-VF to LV _{CC} +VF	V
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

Allowable Operating Range at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Power source voltage 1	VREG		4 to 6	٧
Power source voltage 2	C_VCC		8 to 28	V
Power source voltage 3	D_V _{CC}		8 to 28	V
Power source voltage 4	L_V _{CC}		8 to 28	V
Electric potential difference between MGND and SGND	ΔGND	(MGND)-(SGND)	-0.3 to +0.4	٧

Electrical Characteristics

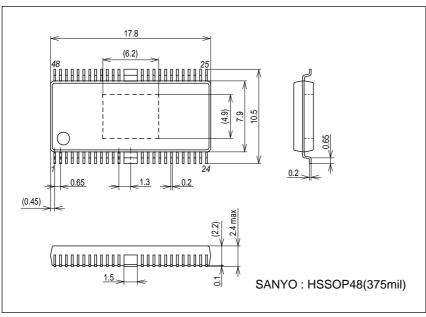
-	2 11	Ratings								
Parameter	Symbol Conditions -		min	typ	max	Unit				
Common Unit at Ta = 25°C, VREG = 5V, C_V _{CC} = D_V _{CC} = L_V _{CC} = 12V										
Power source current 1	IVREG			17	25	mA				
Power source current 2	IC_VCC			0.3	2	mA				
Power source current 3	ID_V _{CC}			0.6	1	mA				
Power source current 4	IL_V _{CC}			2	3	mA				
Power source current 5	IV _{CC} Q	VREG = 0V, IC_V _{CC} +ID_V _{CC} +IL_V _{CC}			100	μΑ				
Thermal shutdown temperature	TSD	*Design Target Value	140	160	180	°C				
Thermal shutdown hysteresis	ΔTSD	*Design Target Value		15		°C				
Capstan Motor Unit at Ta = 25°C, VREG	G = 5V, C_V _{CC}	= 12V								
Output saturation voltage 1	VOSAT	I _O = 1.0A, Source+Sink		2.6	4.0	V				
Hall signal input level	VHALL		60			mVp-p				
Hall in-phase input voltage	VCM		1.0		V _{CC} -	V				
C_ILM pin input voltage range	VCLIM		0		VREG	V				
C_ILM pin input current	ICLIM	C_LIM = 3V			2.0	μΑ				
C_LIM control start voltage	VCLIMST	$C_RF = 0.5\Omega$	2.4	2.5	2.6	V				
C_LIM gain	GCLIM	$C_{CNT} = 5V$, $C_{RF} = 0.5\Omega$	0.49	0.53	0.57	V/V				
C_LIM pin short brake release voltage	BROFF1		1.1		1.4	V				
C_CNT input voltage range	VCCNT		0		VREG	V				

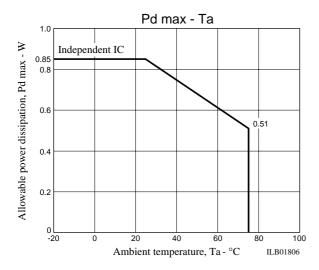
^{*} Note: Thermal design must be set for a junction temperature of 140°C.

^{*} It is a design target value and measurement is not carried out.

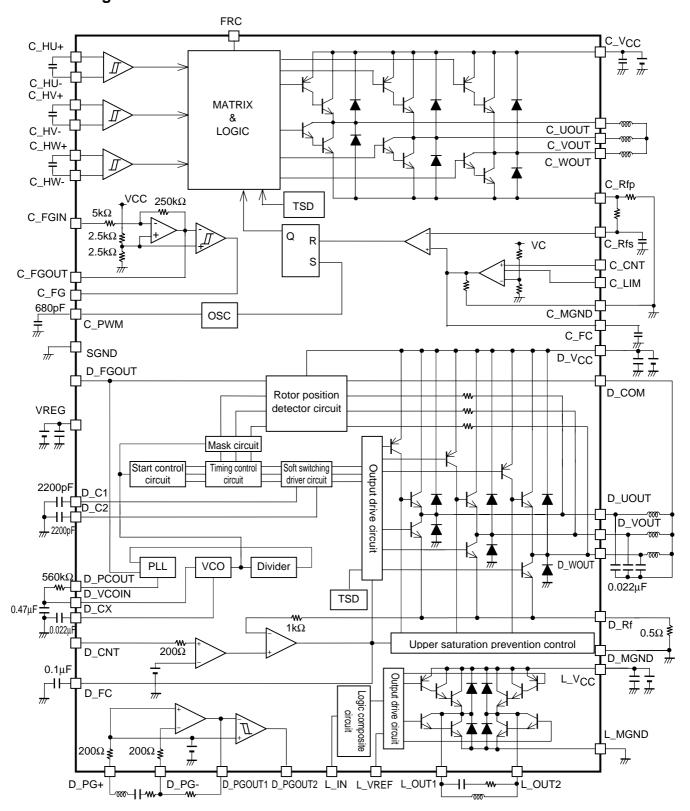
Continued		

Parameter	Symbol	Conditions	Ratings			Unit
r drameter	Cymbol	Conditions	min	typ	max	Oran.
C_CNT input current	ICCTL	C_CNT = 3V			2.0	μΑ
C_CNT control start voltage	VCCNTST	$C_RF = 0.5\Omega$	2.4	2.5	2.6	V
C_CNT gain	GCCNT	C_RF = 0.5Ω	0.49	0.53	0.57	V/V
C_CNT pin short brake release voltage	BROFF2		1.1		1.4	V
F/R forward voltage	VFW		1.5		VREG	V
F/R reverse voltage	VRW		0		1	V
F/R input current	IFR	C_FR = 3V		100	200	μΑ
FG amplifier reference voltage	VFGR		2.40	2.50	2.60	V
Linear amplifier gain DC	GDC		47	50	53	fold
Hysteresis amplifier output voltage	VHO	I _{HO} = 4mA		0.2	0.4	V
Hysteresis of hysteresis amplifier	VHS	Both hysteresis	60	75	90	mV
Hysteresis amplifier output duty ratio	FGDT	360Hz Fgin = 40mVp-p	49	50	51	%
PWM carrier frequency	FOSC	C_PWM = 680pF	18.5	21.7	25.0	kHz
Internal current limiter setup voltage	CLIM	RF = 100Ω	0.60	0.675	0.75	V
Drum Motor Unit at Ta = 25°C, VREG =	5V, DV _{CC} = 12	V			•	
Output saturation voltage 2	DVSAT2	0.6A, Source+Sink		1.8	2.6	V
D_CNT input voltage range	VD_CNT		0		VREG	V
D_CNT input current	IC_CNT	D_CNT = 3V			0.5	μΑ
D_CNT control start voltage	D_CNTST		2.40	2.50	2.60	V
D_CNT gain	GD_CNT		0.40	0.50	0.60	V/V
PCOUT output current 1	IPCOU	Source side	20	45		μΑ
PCOUT output current 2	IPCOD	Sink side	20	45		μА
VCOIN input current	IVCOIN	VCOIN = 3V, sink current			1	μA
Minimum VCO frequency	FVCO min	CX = 0.022μF, VCOINN = Open	330	410	500	Hz
Maximum VCO frequency	FVCO max	CX = 0.022μF, VCOIN = 5V	18.3	22.8	27.4	kHz
C1/C2 source current ratio	RSOURCE	1-(IC1SOURCE/IC2SOURCE)	-12	0	12	%
C1/C2 sink current ratio	RSINK	1-(IC1SINK/IC2SINK)	-12	0	12	%
C1 source/sink current ratio	RC1	IC1SOURCE/IC1SINK	40	50	60	%
C2 source/sink current ratio	RC2	IC2SOURCE/IC2SINK	40	50	60	%
FGO output high level voltage	VFGH		4.7			V
FGO output low level voltage	VFGL				0.4	V
PG amplifier reference voltage	VPGREF		2.8	3.0	3.2	V
PG amplifier input offset	OPG		-5	0.0	+5	mV
PG amplifier input bias	IPG	PG- = 2.5V, source current			0.25	μА
Linear amplifier gain	GAMP	Freq = 1kHz	50		0.20	dΒ
Hysteresis amplifier threshold level 1	VHYS1		70	100	130	mV
Hysteresis amplifier threshold level 2	VHYS2		140	200	260	mV
PG output high level voltage	VPH		4.7	200	200	V
PG output low level voltage	VPL		4.7		0.2	V
FG/PG mix MID voltage	Vmid		2.4	2.5		V
Internal current limiter setup voltage	DLIM	$RF = 100\Omega$	2.4	2.5	2.6	V
		101 = 10022	0.30	0.33	0.36	V
Loading Unit at Ta = 25°C, VREG = 5V,	T	V				_
Input voltage	1 (HIGH)	V _{IN} H		4		5
	2 (Middle)	V _{IN} M		2		3
	3 (LOW)	V _{IN} L		0		1

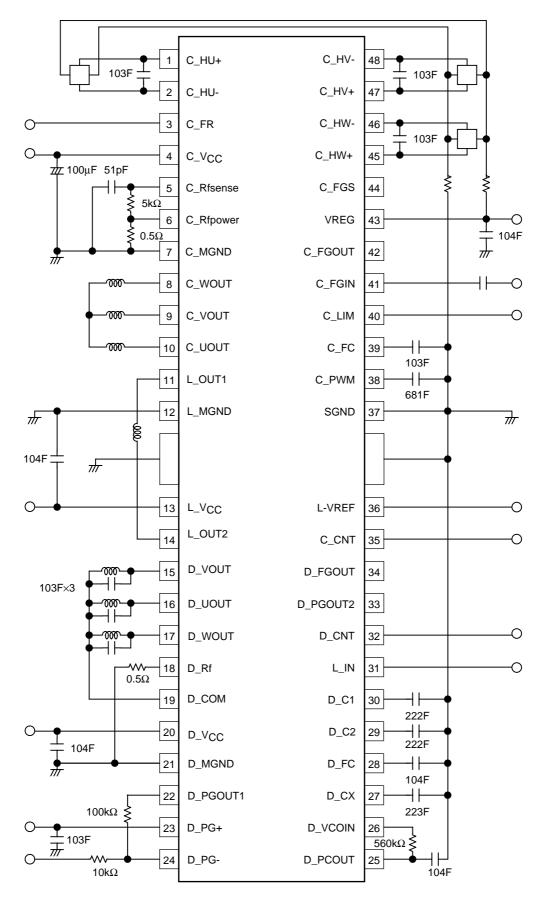

Continued from preceding page.

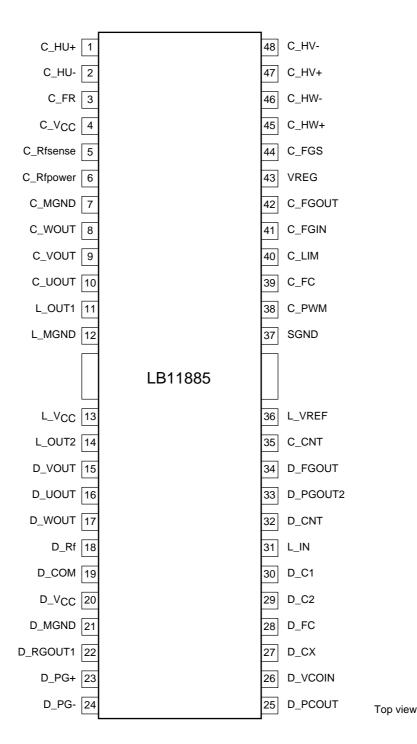

Parameter	Cumi		Conditions	Ratings			Unit	
Parameter	Syml	501	Conditions	min	typ	max	Offic	
Input current	IL _{IN} 0		L _{IN} = 0V, source side		130	200	μΑ	
	I _{LIN} 5		L _{IN} = 5V, sink side		130	200	μΑ	
Saturation voltage	VSAT U-1		$L_VREF = LV_{CC}$ Between output and LV_{CC} $I_O = 0.6A$, CW/CCW mode		1.9	2.4	V	
	VSAT L-1		L_VREF = LV _{CC} Between output and LV _{CC} I _O = 0.6A, CW/CCW mode		1.2	1.7	٧	
	VSATIL		L_VREF = LV _{CC} SINK+SOURCE I _O = 0.4A, CW/CCW mode		2.8	3.5	٧	
Residual voltage of upper side	VSAT U-1		L_VREF = 8V Between output and L_MGND IO = 0.6A, CW/CCW mode	7.2	8.0	8.8	٧	
Output transistor leak current	Upper	ILU	V _{CC} = 0V			50	μΑ	
	Lower	ILL	V _{CC} = 0V			50	μΑ	
L_VREF current	IVREF		$L_VREF = LV_{CC}$, source side $L_{IN} = 0.5V$		2	5	μΑ	

Package Dimensions


unit: mm (typ)

3278




Block Diagram

Sample Application Circuit

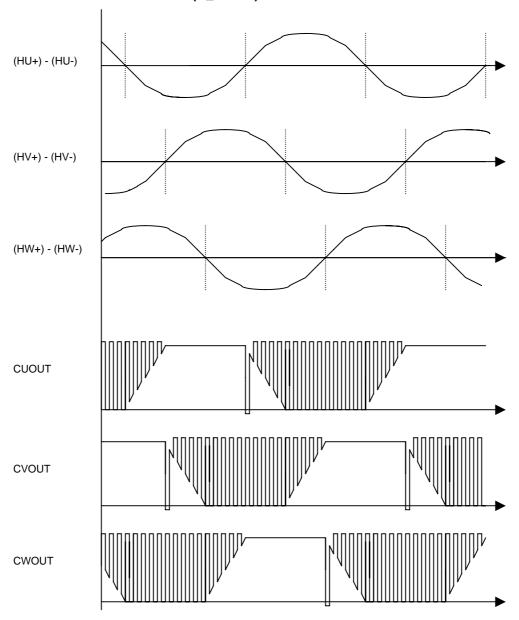
Pin Assignment

Pin Description

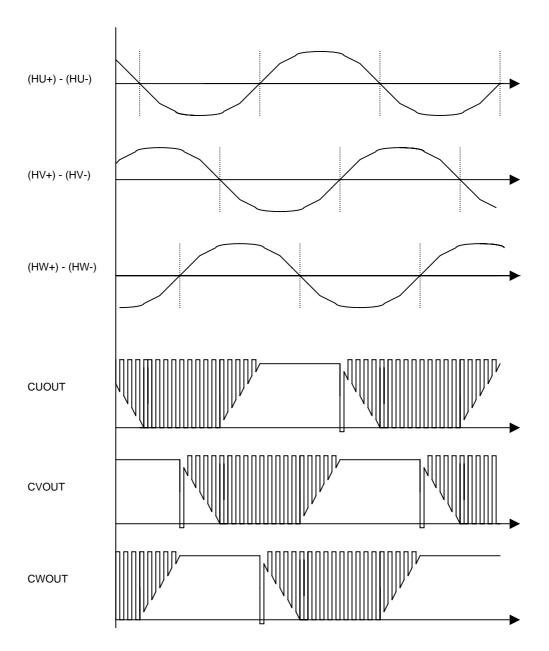
1 111 12	escription	<u> </u>		
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
4	C-V _{CC}	8V to 28V	Power pin of capstan motor driver	
20	D-V _{CC}	8V to 28V	Power pin of drum motor driver	
13	L-V _{CC}	8V to 28V	Power pin of loading motor driver	
43	VREG	4V to 6V	Power pin to provide all voltages other than the output transistor and pre-drive	
7	C-MGND		Capstan motor GND	
37	SGND		GND for all other than output	
1	C-HU+		U-phase Hall element input pin HU+>HU- state for logic H	→ Vcc
2	C-HU-	1.5V to V _{CC} -1.5V		
47	C-HV+		V-phase Hall element input pin. HV+>HV- state for logic H	(1) (2) (47) (48)
48	C-HV-			45 6
45	C-HW+		W-phase Hall element input pin. HW+>HW- state for logic H	* *
46	C-HW-			<i>m</i>
41	C-FGIN	1V to V _{CC} -1.5V	Capstan FGAMP reverse input pin	VCC 5kΩ ≥ 300Ω 41 • w• •
42	C-FGOUT		Capstan FGMP linear output pin Return resistor is incorporated with the amplification degree of about 50-fold.	250kΩ 42
44	C-FGS		FG Schmidt amp output pin of capstan block	VCC \$20kΩ \$5kΩ 44
3	C-FR	0V to V _{CC}	Capstan forward/reverse control pin	Vcc 4 300Ω 1.2V

Continued from preceding page. Symbol Pin voltage Pin Description **Equivalent Circuit** No 39 C-FC Vcc Capstan control loop frequency characteristics compensation pin 5 C-RFS Capstan current detection filter pin Connect the current detected at C-₄300Ω 300Ω∠ RFP to this pin after passing through the CR filter. 38 C-PWM Capacitor connection pin for PWM oscillation at capstan **(V)** 300Ω (38) $3k\Omega$ 0V to V_{CC} 40 C-LIM Capstan current limit setting pin Vcc (35) C-CNT 0V to $V_{\mbox{\footnotesize CC}}$ 35 Capstan speed control voltage 300Ω 300Ω application pin C-WOUT 8 Capstan W-phase output pin CVCO C-VOUT 9 Capstan V-phase output pin 2kΩ ₹ 10 C-UOUT Capstan U-phase output pin 6 C-RFP PWRTR GND and current return resistor connection pin

Continue	ed from preceding	page.		
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
28	D-FC		Drum frequency characteristics compensation pin. Insertion of a capacitor to GND stops oscillation of the closed loop of current control system	Vcc Vcc Vcc
32	D-CNT	0V to VCC	Drum speed control pin. Control is the constant current control to which current return is applied from DRS.	32 w Vcc w Vcc w W W W W W W W W W W W W W W W W W W
21	D-MGND		Drum current control sensing GND pin. Connect this pin to GND of the current detection resistor.	21 Vcc w—18
23	D-PG+		Drum PG amplifier non-inverted input pin Biased internally to (3/5)×V _{CC}	VCC
24	D-PG-		Drum PG amplifier inverted input pin	30032 24 30032 15kΩ


Continue	d from preceding	page.		
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
22	D-PGOUT1		Drum PG amplifier linear output pin	Vcc 5kΩ ₹ 300Ω 500Ω ₹ ₹ 22
33	D-PGOUT2		Drum PG Schmidt amplifier output pin	V _{CC} 333
34	D-FGOUT		Drum motor reverse counter- electromotive voltage detection output pin (three-phase synthesizing)	VCC \$5kΩ \$34
26	D-VCOIN		VCO circuit voltage input pin of drum block. The PCOUT pin voltage is input via CR filter.	26 VCC 4.7kΩ
25	D-PCOUT		VCO circuit PLL output pin of drum block.	Vcc

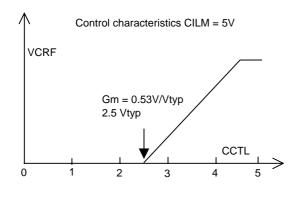
Continued from preceding page. Equivalent Circuit Symbol Pin voltage Pin Description No D-UOUT 16 Drum motor driver output pin DLVCO 15 D-VOUT D-WOUT 17 D-RF 18 Minimum potential of drum motor driver output transistor. Constantcurrent control is made through detection of this voltage. The current limiter also functions by detecting this potential. 19 D-COM Motor coil neutral point input pin. The DVCO coil voltage waveform is detected with reference to this voltage. 200Ω W 200Ω D-C1 30 Triangular wave generating capacitor connection pin of drum VCC block. This triangular wave performs soft- switching of the coil output waveform. 29 D-C2 $1k\Omega$ 1/2V_{CC}-VF 27 D-CX In the VCO circuit, the operation Vcc frequency range and minimum operation frequency are determined by means of the capacitor value connected to this 300Ω pin and GND.

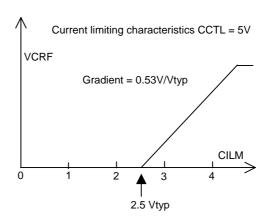

Continue	d from preceding	page.		
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
36	L-VREF	0 to LVCO	Loading output voltage setting pin	11 14 30kΩ Ψ Ψ 30kΩ \$
31	L-IN	0V to VCC	Loading logic input pin	20kΩ 10kΩ 20kΩ 20kΩ 7/// // // // // // // // // // // // //
11	L-OUT1		Loading motor driver output pin	(1)(14)
14	L-OUT2			
12	L-MGND		Loading output transistor GND pin	12 // 36

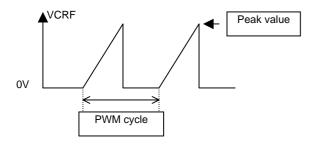
Timing Chart and Truth Table

1. Capstan Motor Driver Drive waveform (C_FR = L)

2. Capstan Motor Driver Drive waveform (FRC = H)

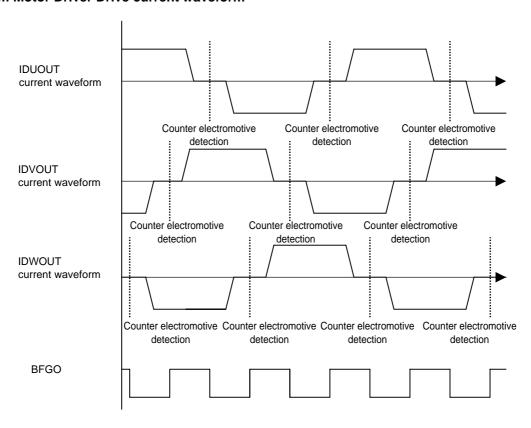



3. Capstan Motor Driver Truth Table & Control Functions


	Causas Cials		Hall input			
	Source→Sink	U	V	W	FRC	
1	$V\toW$	Н			Н	
1	$W\toV$	П	Н	L	L	
0	$U\toW$				Н	
2	$W\toU$	Н	L	L	L	
3	$U\toV$	Н	L	Н	Н	
3	$V\toU$	П	L	П	L	
4	$W\toV$	L		н	Н	
4	$V\toW$		L	н	L	
_	$W\toU$				Н	
5	$U\toW$	L	Н	Н	L	
6	$V\toU$		11	L	Н	
6	$U\toV$	L	Н	L	L	

Note) H of FRC means the voltage of 1.5V or more while L means the voltage of 1.0V or less. (At $V_{CC} = 5V$) Note) For the Hall input, the input H means the condition in which (+) relative to each phase input (-) is higher by 0.1V. The input L means the condition in which (+) relative to (-) is lower by 0.1V or more.

Control function & control limiting function



Caution: For the VCRF voltage of control characteristics, the peak value is to be measured. Cautions for use)

- When the direct reversion brake is to be used, keep the voltage at the C_LIM terminal 3.1kV or less so that IOMAX is not exceeded.
- The capacitor to be used between power supply and GND should be an electrolytic capacitor of 47µF or more.

4. Drum Motor Driver Drive current waveform

5. Loading Motor Truth table

Input	Ou	Mode	
LIN	LOUT1	LOUT2	Mode
L	L	Н	Reverse
M (or OPEN)	L	L	Brake
Н	Н	L	Forward

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 2007. Specifications and information herein are subject to change without notice.