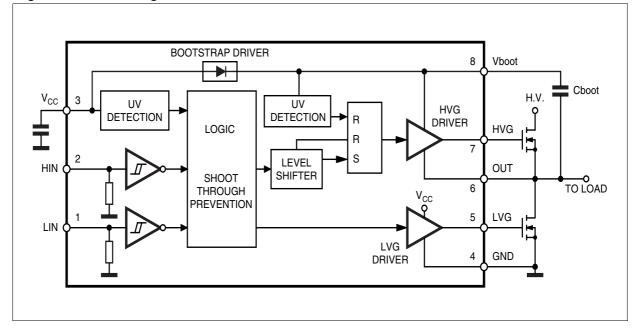


L6388E

High-voltage high and low side driver

Features

- High voltage rail up to 600V
- dV/dt immunity ±50V/nsec in full temperature range
- Driver current capability:
 - 400mA source,
 - 650mA sink
- Switching times 70/40 nsec rise/fall with 1nF load
- 3.3V, 5V, 15V CMOS/TTL inputs comparators with hysteresys and pull down
- Internal bootstrap diode
- Outputs in phase with inputs
- Dead time and interlocking function



Description

The L6388E is an high-voltage device, manufactured with the BCD"OFF-LINE" technology.

It has a Driver structure that enables to drive independent referenced N Channel Power MOS or IGBT. The High Side(Floating) Section is enabled to work with voltage Rail up to 600V.

The Logic Inputs are CMOS/TTL compatible for ease of interfacing with controlling devices.

Figure 1. Block diagram

1	Electrical data
	1.1 Absolute maximum ratings 3
	1.2 Thermal data 3
	1.3 Recommended operating conditions
2	Pin connection
3	Electrical characteristics
	3.1 AC operation
	3.2 DC operation
4	Waveforms definitions
5	Input logic
6	Bootstrap driver
	6.1 _{CBOOT} selection and charging
7	Typical characteristic 11
8	Package mechanical data 13
9	Order codes
10	Revision history

1 Electrical data

1.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{out}	Output voltage	-3 to V _{boot} -18	V
V _{cc}	Supply voltage	- 0.3 to +18	V
V _{boot}	Floating supply voltage	-1 to 618	V
V _{hvg}	High side gate output voltage	-1 to V _{boot}	V
V _{lvg}	Low side gate output voltage	-0.3 to V _{cc} +0.3	V
Vi	Logic input voltage	-0.3 to V _{cc} +0.3	V
dV _{out} /d _t	Allowed output slew rate	50	V/ns
P _{tot}	Total power dissipation ($T_J = 85 \ ^\circ C$)	750	mW
Тj	Junction temperature	150	°C
Τ _s	Storage temperature	-50 to 150	°C

Table 1. Absolute maximum ratings

Note: ESD immunity for pins 6, 7 and 8 is guaranteed up to 900 V (Human Body Model)

1.2 Thermal data

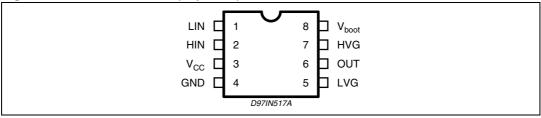
Table 2. Thermal data

Symbol	Parameter	SO-8	DIP-8	Unit
R _{th(JA)}	Thermal Resistance Junction to ambient	150	100	°C/W

1.3 Recommended operating conditions

Table 3. Recommended operating conditions

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
V _{out}	6	Output voltage		(1)		580	V
V _{BS} ⁽²⁾	8	Floating supply voltage		(1)		17	V
f _{sw}		Switching frequency	HVG,LVG load $C_L = 1nF$			400	kHz
V _{cc}	3	Supply voltage				17	V
TJ		Junction temperature		-45		125	°C


1. If the condition Vboot - Vout < 18V is guaranteed, Vout can range from -3 to 580V

2. $V_{BS} = V_{boot} - V_{out}$

2 Pin connection

Figure 2. Pin connection (Top view)

Table 4. Pin description

N°	Pin	Туре	Function
1	LIN	Ι	Low side driver logic input
2	HIN	I	High side driver logic input
3	V _{cc}		Low voltage power supply
4	GND		Ground
5	LVG ⁽¹⁾	0	Low side driver output
6	VOUT	0	High side driver floating reference
7	HVG ⁽¹⁾	0	High side driver output
8	V _{boot}		Bootstrap supply voltage

 The circuit guarantees 0.3V maximum on the pin (@ Isink = 10mA). This allows to omit the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low.

3 Electrical characteristics

3.1 AC operation

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
t _{on}	1 vs 5	High/low side driver turn-on propagation delay	$V_{out} = 0V$		225	300	ns
t _{off}	2 vs 7	High/low side driver turn-off propagation delay	$V_{out} = 0V$		160	220	ns
t _r	5, 7	Rise time	$C_{L} = 1000 pF$		70	100	ns
t _f	5, 7	Fall time	$C_{L} = 1000 pF$		40	80	ns
DT	5, 7	Dead time		220	320	420	ns

Table 5.AC operation electrical characteristics ($V_{CC} = 15V$; $T_J = 25^{\circ}C$)

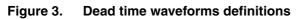
3.2 DC operation

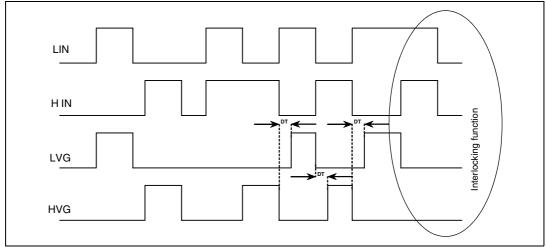
Table 6.DC operation electrical characteristics ($V_{CC} = 15V; T_J = 25^{\circ}C$)

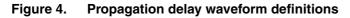
Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit		
Low sup	Low supply voltage section								
V _{ccth1}		V _{cc} UV turn on threshold		9.1	9.6	10.1	V		
V _{ccth2}		V _{cc} UV turn off threshold		7.9	8.3	8.8	V		
V _{cchys}		V _{cc} UV hysteresis		0.9			V		
I _{qccu}	3	Undervoltage quiescent supply current	$V_{\text{CC}} \leq 9V$		250	330	μA		
I _{qcc}		Quiescent current	$V_{cc} = 15V$		350	450	μA		
R _{dson}		Bootstrap driver on resistance ⁽¹⁾	$V_{cc} \ge 12.5V$		125		Ω		
Bootstra	pped	supply voltage section							
V _{BSth1}		V _{BS} UV turn on threshold		8.5	9.5	10.5	V		
V _{BSth2}		V _{BS} UV turn off threshold		7.2	8.2	9.2	V		
V _{BShys}	8	V _{BS} UV hysteresis		0.9			V		
I _{QBS}		V _{BS} quiescent current	HVG ON			250	μA		
I _{LK}		High voltage leakage current	$V_{hvg} = V_{out} =$ $V_{boot} = 600V$			10	μA		

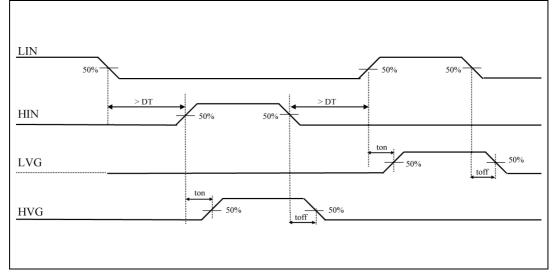
Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
High/low side driver							
I _{so}	5,7	Source short circuit current	$V_{IN} = V_{ih} (tp < 10 \mu s)$	300	400		mA
I _{si}	5,7	Sink short circuit current	$V_{IN} = V_{il} (tp < 10 \mu s)$	500	650		mA
Logic inp	outs						
V _{il}		Low level logic input voltage				1.1	V
V _{ih}	1 0	High level logic input voltage		1.8			V
l _{ih}	1, 2	High level logic input current	V _{IN} = 15V		20	70	μA
l _{il}		Low level logic input current	$V_{IN} = 0V$	-1			μA

Table 6.DC operation electrical characteristics (continued) ($V_{CC} = 15V$; $T_J = 25^{\circ}C$)


1. $R_{DS(on)}$ is tested in the following way:


$$R_{DSON} = \frac{(V_{CC} - V_{CBOOT1}) - (V_{CC} - V_{CBOOT2})}{I_1(V_{CC}, V_{CBOOT1}) - I_2(V_{CC}, V_{CBOOT2})}$$


where I_1 is pin 8 current when V_{CBOOT} = $V_{CBOOT1},\,I_2$ when V_{CBOOT} = V_{CBOOT2}



4 Waveforms definitions

57

5 Input logic

Input logic is provided with an interlocking circuitry which avoids the two outputs (LVG, HVG) to be active at the same time when both the logic input pins (LIN, HIN) are at a high logic level. In addition, to prevent cross conduction of the external MOSFETs, after each output is turned-off the other output cannot be turned-on before a certain amount of time (DT) (see *Figure 3*).

6 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (*Figure 5* a). In the L6388E a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low side driver (LVG), with in series a diode, as shown in *Figure 5* b. An internal charge pump (*Figure 5* b) provides the DMOS driving voltage. The diode connected in series to the DMOS has been added to avoid undesirable turn on of it.

6.1 C_{BOOT} selection and charging

To choose the proper C_{BOOT} value the external MOS can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOS total gate charge:

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It has to be:

C_{BOOT}>>>C_{EXT}

e.g.: if Q_{gate} is 30nC and V_{gate} is 10V, C_{EXT} is 3nF. With C_{BOOT} = 100nF the drop would be 300mV.

If HVG has to be supplied for a long time, the C_{BOOT} selection has to take into account also the leakage losses.

e.g.: HVG steady state consumption is lower than 200 μ A, so if HVG T_{ON} is 5ms, C_{BOOT} has to supply 1 μ C to C_{EXT}. This charge on a 1 μ F capacitor means a voltage drop of 1V.

The internal bootstrap driver gives great advantages: the external fast recovery diode can be avoided (it usually has great leakage current).

This structure can work only if V_{OUT} is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS R_{DSON} (typical value: 125 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account.

The following equation is useful to compute the drop on the bootstrap DMOS:

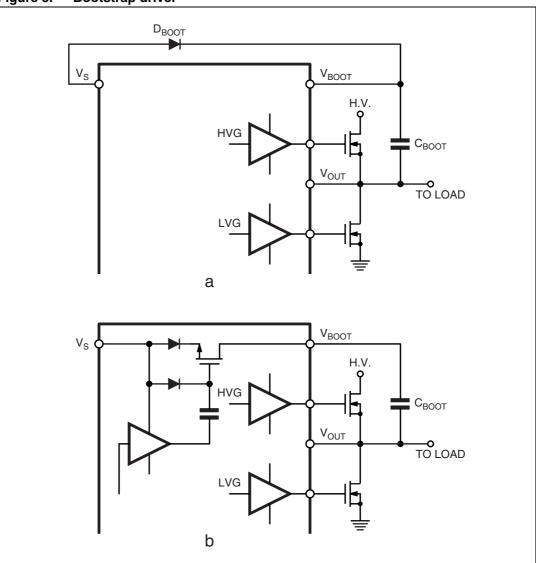
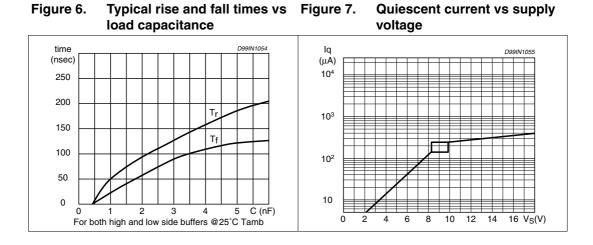
$$V_{drop} = I_{charge}R_{dson} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}}R_{dson}$$

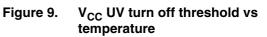
where Q_{gate} is the gate charge of the external power MOS, R_{dson} is the on resistance of the bootstrap DMOS, and T_{charge} is the charging time of the bootstrap capacitor.

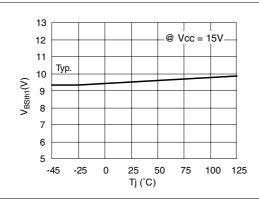
For example: using a power MOS with a total gate charge of 30nC the drop on the bootstrap DMOS is about 1V, if the T_{charge} is $5\mu s$. In fact:

$$V_{drop} = \frac{30nC}{5\mu s} \cdot 125\Omega \sim 0.8V$$

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.


Figure 5. Bootstrap driver



7 Typical characteristic

Figure 8. V_{BOOT} UV turn on threshold vs temperature

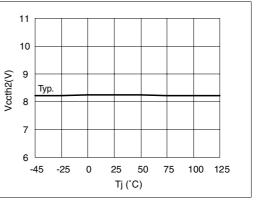
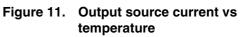
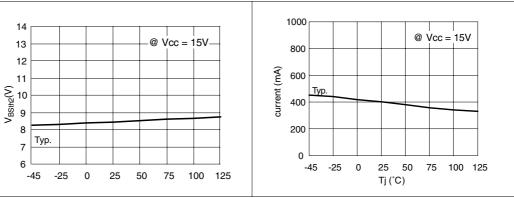
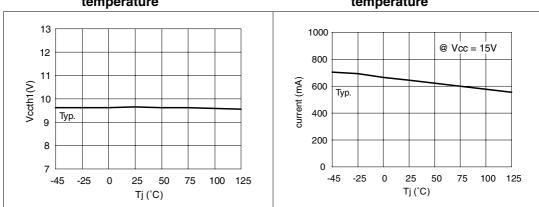





Figure 10. V_{BOOT} UV turn off threshold vs temperature

Figure 12. V_{CC} UV turn on threshold vs Figure 13. Output sink current vs temperature

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

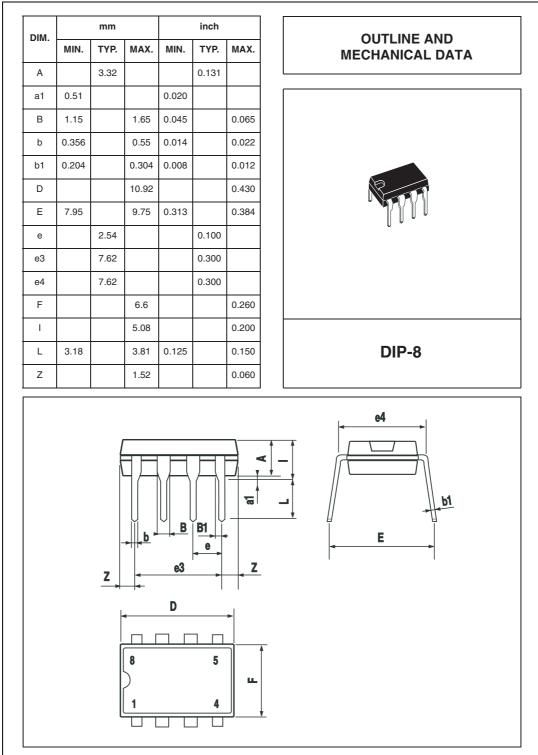


Figure 14. DIP-8 mechanical data and package dimensions

inch mm DIM. **OUTLINE AND** MIN. TYP. MAX. MIN. TYP. MAX. **MECHANICAL DATA** А 1.750 0.0689 0.250 0.0039 0.0098 A1 0.100 A2 1.250 0.0492 0.280 0.480 0.0110 0.0189 b 0.170 0.230 0.0067 0.0091 С D (1) 4.800 4.900 5.000 0.1890 0.1929 0.1969 0.2283 0.2362 0.2441 Е 5.800 6.000 6.200 3.800 3.900 0.1496 0.1535 0.1575 4.000 E1⁽²⁾ 1.270 0.0500 е h 0.250 0.500 0.0098 0.0197 L 0.400 1.270 0.0157 0.0500 1.040 0.0409 L1 0° 8° 0° 8° k 0.100 0.0039 ccc Notes: 1. Dimensions D does not include mold flash, protrusions or gate burrs. Mold flash, potrusions or gate burrs shall not exceed 0.15mm in total (both side).
Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side. **SO-8** D hx45° A2 A b С A1 SEATING PLANE 0,25 mm GAGE PLANE С Ε E1 L1 4 0016023 D

Figure 15. SO-8 mechanical data and package dimensions

9 Order codes

Table 7. Order co

Part number	Package	Packaging
L6388E	DIP-8	Tube
L6388ED	SO-8	Tube
L6388ED013TR	SO-8	Tape and reel

10 Revision history

Table 8.Document revision history

Date	Revision	Changes
11-Oct-2007	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

