

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

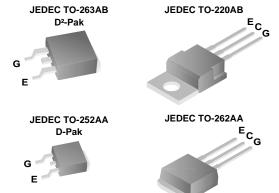
EcoSPARKTM 300mJ, 400V, N-Channel Ignition IGBT

General Description

The ISL9V3040D3S, ISL9V3040S3S, ISL9V3040P3, and ISL9V3040S3 are the next generation ignition IGBTs that offer outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D²-Pak (TO-263), and TO-262 and TO-220 plastic packages. This device is intended for use in automotive ignition circuits, specifically as a coil driver. Internal diodes provide voltage clamping without the need for external components.

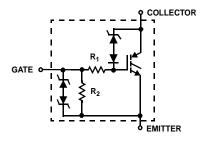
EcoSPARK™ devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.

Formerly Developmental Type 49362


Applications

- · Automotive Ignition Coil Driver Circuits
- Coil- On Plug Applications

Features


- · Space saving D-Pak package availability
- SCIS Energy = 300mJ at T_J = 25°C
- · Logic Level Gate Drive

Package

COLLECTOR (FLANGE)

Symbol

Device Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	430	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V
E _{SCIS25}	At Starting $T_J = 25$ °C, $I_{SCIS} = 14.2A$, $L = 3.0$ mHy	300	mJ
E _{SCIS150}	At Starting T _J = 150°C, I _{SCIS} = 10.6A, L = 3.0 mHy	170	mJ
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	21	Α
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	17	А
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
P _D	Power Dissipation Total T _C = 25°C	150	W
	Power Dissipation Derating T _C > 25°C	1.0	W/°C
TJ	Operating Junction Temperature Range	-40 to 175	°C
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C
TL	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	4	kV

Device Marking		Device	Package	Reel Size	Тар	e Width	Quantity	
V3040D		ISL9V3040D3ST	TO-252AA	330mm	1	6mm	2500	
V3040S		ISL9V3040S3ST	TO-263AB	330mm	24mm		800	
V304	0P	ISL9V3040P3	TO-220AA	Tube		N/A	50	
V304	0S	ISL9V3040S3	TO-262AA	Tube	N/A		50	
V304	0D	ISL9V3040D3S	TO-252AA	Tube	N/A		75	
V3040S ISL9V3040S3S TC		TO-263AB	Tube	N/A		50		
lectrica	al Cha	racteristics $T_A = 25$ °C	unless otherwise	noted				
Symbol		Parameter	Test C	onditions	Min	Тур	Max	Unit
ff State	Charact	eristics						
BV _{CER}	Collector	to Emitter Breakdown Voltag	$R_G = 1K\Omega$, S	$I_C = 2mA$, $V_{GE} = 0$, $R_G = 1K\Omega$, See Fig. 15 $T_J = -40$ to 150°C		400	430	V
BV _{CES}	Collector	to Emitter Breakdown Voltag	$R_G = 0$, See	$I_C = 10$ mA, $V_{GE} = 0$, $R_G = 0$, See Fig. 15 $T_J = -40$ to 150°C		420	450	V
BV _{ECS}	Emitter t	o Collector Breakdown Voltag	$I_{C} = -75 \text{mA}, Y$ $T_{C} = 25 ^{\circ}\text{C}$	$I_C = -75 \text{mA}, V_{GE} = 0 \text{V},$		-	-	V
BV_GES		Emitter Breakdown Voltage	$I_{GES} = \pm 2mR$		±12	±14	-	V
I _{CER}	Collector	to Emitter Leakage Current	V _{CER} = 250V		-	-	25	μA
			$R_G = 1KΩ$, See Fig. 11	T _C = 150°C	-	-	1	mA
I _{ECS}	Emitter t	o Collector Leakage Current	V _{EC} = 24V, See Fig. 11	ee $T_C = 25^{\circ}C$	-	-	1	mA
				T _C = 150°C	-	-	40	mA
R ₁	Series G	ate Resistance			-	70	-	Ω
R ₂	ı	Emitter Resistance			10K	-	26K	Ω
n State	Charact	eristics						
V _{CE(SAT)}	Collector	to Emitter Saturation Voltage	$I_{C} = 6A,$ $V_{GE} = 4V$	$T_C = 25$ °C, See Fig. 3	-	1.25	1.60	V
V _{CE(SAT)}	Collector	to Emitter Saturation Voltage	$I_C = 10A,$ $V_{GE} = 4.5V$	$T_C = 150$ °C, See Fig. 4	-	1.58	1.80	V
V _{CE(SAT)}	Collector	to Emitter Saturation Voltage	$I_C = 15A,$ $V_{GE} = 4.5V$	T _C = 150°C	-	1.90	2.20	V
ynamic	Charact	eristics						
Q _{G(ON)}	Gate Ch	arge	$I_C = 10A, V_C$ $V_{GE} = 5V, Se$		-	17	-	nC
V _{GE(TH)}	Gate to	Emitter Threshold Voltage	$I_C = 1.0 \text{mA},$	0	1.3	-	2.2	V
. ,			$V_{CE} = V_{GE}$, See Fig. 10	T _C = 150°C	0.75	-	1.8	V
V_{GEP}	Gate to	Emitter Plateau Voltage	$I_C = 10A, V_C$	_E = 12V	-	3.0	-	V
witching	Charac	cteristics						
t _{d(ON)R}	Current	Turn-On Delay Time-Resistive			-	0.7	4	μs
t _{rR}	Current	Rise Time-Resistive	V-	$V_{GE} = 5V$, $R_G = 1K\Omega$ $T_J = 25$ °C, See Fig. 12		2.1	7	μs
t _{d(OFF)L}	Current	Turn-Off Delay Time-Inductive		$V_{CE} = 300V, L = 500\mu Hy,$		4.8	15	μs
t _{fL}	Current	Fall Time-Inductive		$V_{GE} = 5V$, $R_G = 1K\Omega$ $T_J = 25$ °C, See Fig. 12		2.8	15	μs
SCIS	Self Clai	mped Inductive Switching		$T_J = 25^{\circ}\text{C}$, L = 3.0 mHy, $R_G = 1\text{K}\Omega$, $V_{GE} = 5\text{V}$, See Fig. 1 & 2		-	300	mJ
hermal C	Characte	eristics						
$R_{\theta JC}$	Thermal Resistance Junction-Case		All packages		_	_	1.0	°C/\

Typical Performance Curves

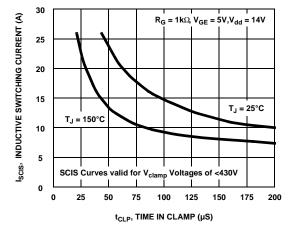


Figure 1. Self Clamped Inductive Switching Current vs Time in Clamp

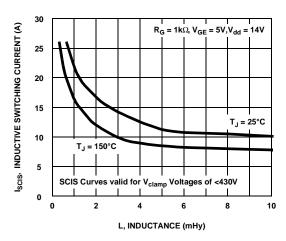


Figure 2. Self Clamped Inductive Switching Current vs Inductance

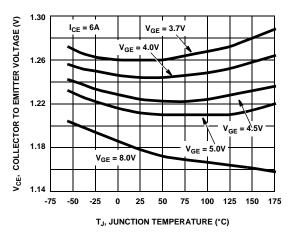


Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

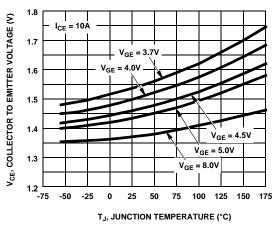


Figure 4. Collector to Emitter On-State Voltage vs Junction Temperature

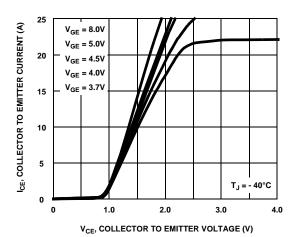


Figure 5. Collector to Emitter On-State Voltage vs Collector Current

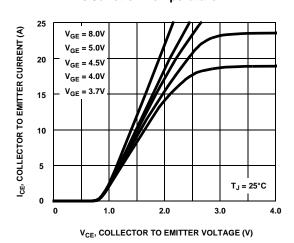
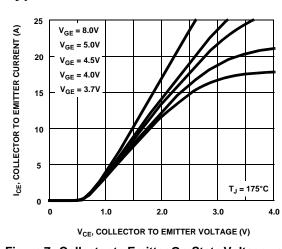



Figure 6. Collector to Emitter On-State Voltage vs Collector Current

Typical Performance Curves (Continued)

Figure 7. Collector to Emitter On-State Voltage vs Collector Current

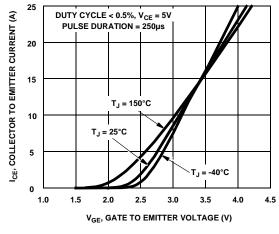


Figure 8. Transfer Characteristics

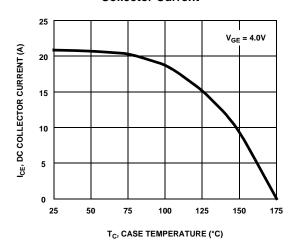


Figure 9. DC Collector Current vs Case Temperature

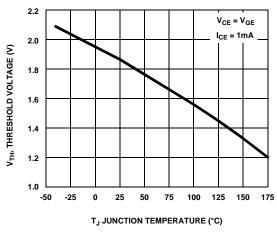


Figure 10. Threshold Voltage vs Junction Temperature

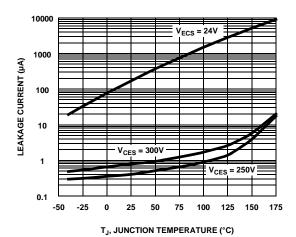


Figure 11. Leakage Current vs Junction Temperature

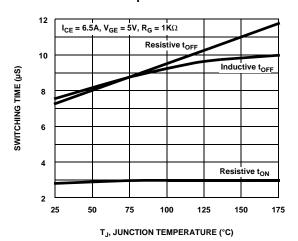


Figure 12. Switching Time vs Junction Temperature

Typical Performance Curves (Continued)

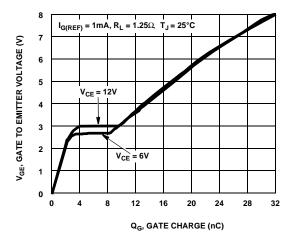


Figure 13. Capacitance vs Collector to Emitter Voltage

Figure 14. Gate Charge

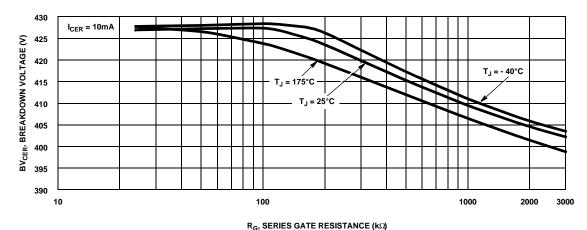


Figure 15. Breakdown Voltage vs Series Gate Resistance

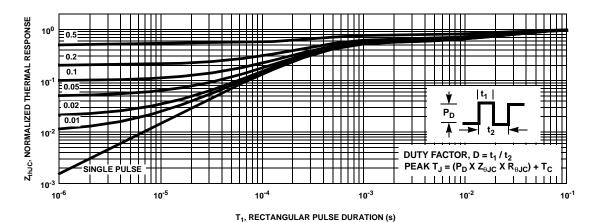
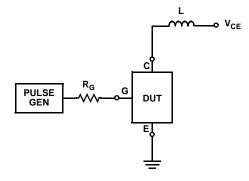



Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

Test Circuit and Waveforms

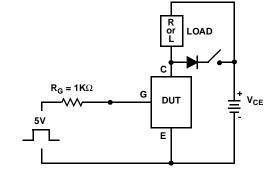


Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

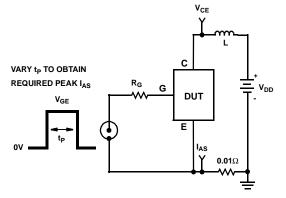


Figure 19. Energy Test Circuit

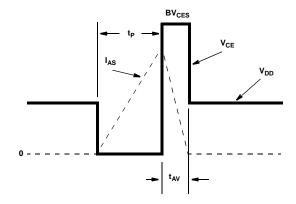


Figure 20. Energy Waveforms

SPICE Thermal Model REV 7 March 2002 JUNCTION ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3 CTHERM1 th 6 2.1e -3 CTHERM2 6 5 1.4e -1 CTHERM3 5 4 7.3e -3 CTHERM4 4 3 2.1e -1 RTHERM1 CTHERM1 CTHERM5 3 2 1.1e -1 CTHERM6 2 tl 6.2e +6 RTHERM1 th 6 1.2e -1 6 RTHERM2 6 5 1.9e -1 RTHERM3 5 4 2.2e -1 RTHERM4 4 3 6.0e -2 RTHERM2 CTHERM2 RTHERM5 3 2 5.8e -2 RTHERM6 2 tl 1.6e -3 SABER Thermal Model 5 SABER thermal model ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3 RTHERM3 CTHERM3 template thermal_model th tl thermal_c th, tl 4 ctherm.ctherm1 th 6 = 2.1e -3ctherm.ctherm2 6.5 = 1.4e - 1ctherm.ctherm3 5 4 = 7.3e -3ctherm.ctherm4 4 3 = 2.2e -1 RTHERM4 CTHERM4 ctherm.ctherm5 3 2 =1.1e -1 ctherm.ctherm6 2 tl = 6.2e +6 rtherm.rtherm1 th 6 = 1.2e -1 3 rtherm.rtherm2 65 = 1.9e-1rtherm.rtherm354 = 2.2e-1rtherm.rtherm443 = 6.0e - 2RTHERM5 CTHERM5 rtherm.rtherm5 3 2 = 5.8e - 2rtherm.rtherm6 2 tl = 1.6e - 32 RTHERM6 CTHERM6

CASE

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench®	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET®	SuperSOT™-8
DOME™	GTO™ .	MICROWIRE™	QS^{TM}	SyncFET™
EcoSPARK™	HiSeC™	MSX TM	QT Optoelectronics™	TinyLogic [®]
E ² CMOS TM	I ² C TM	MSXPro™	Quiet Series™	TINYOPTO™
EnSigna™	<i>i-</i> Lo [™]	OCX^{TM}	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	$OCXPro^{TM}$	RapidConnect™	UHC™
FACT Quiet Serie		OPTOLOGIC®	μSerDes™	UltraFET®
Across the board. Around the world.™ The Power Franchise® Programmable Active Droop™		OPTOPLANAR™ PACMAN™ POP™	SILENT SWITCHER® SMART START™ SPM™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		

Rev. I13