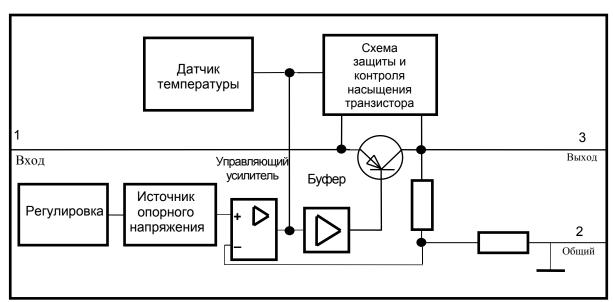
Микросхема мощного стабилизатора напряжения 5 В/550мА с низким остаточным напряжением

IL4270 — интегральная микросхема мощного стабилизатора напряжения 5B/550 мА с низким остаточным напряжением, выполненная в 3-выводном корпусе TO-220AB.


Микросхема мощного стабилизатора напряжения 5В/550мА предназначена для создания постоянного напряжения значением 5В с 2% точностью с остаточным напряжением менее 0.7В при токе нагрузки 550 мА и входном напряжении до 26В. Используется в источниках питания электронной аппаратуры, в том числе в автомобильной электронике. Максимальное входное напряжение (предельный режим) 42В. Микросхема имеет защиту от перенапряжения положительной полярности, внутреннее ограничение максимального тока нагрузки с температурным сбросом выходного напряжения. Микросхема устойчива к воздействию отрицательного напряжения -42В.

Особенности:

- Высокая точность выходного напряжения 5B ± 2%
- Низкое остаточное напряжение
- Встроенная защита от перегрева
- Устойчивость к переполюсовке входного напряжения
- Низкий ток потребления
- Входное напряжение до 42В
- Защита от перенапряжения до 65В (≤400мс)
- Устойчивость к короткому замыканию
- Применима в автомобильной электронике
- Диапазон температуры кристалла от минус 40 до +125°C

IL4270 1 — вход 2 — общий 3 — выход IL4270 — корпус ТО-220AB Т_A = -40° ÷ 125° С

СТРУКТУРНАЯ СХЕМА МИКРОСХЕМЫ IL4270

НАЗНАЧЕНИЕ ВЫВОДОВ МИКРОСХЕМЫ IL4270

Номер вывода ИМС	Условное обозначение	Наименование	Функциональное назначение
1	I	Input	Вход
2	GND	Ground	Общий
3	Q	5-V Output	Выход

ТИПОВЫЕ ЗНАЧЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ (U_I=13.5B, -40 °C \leq T_J \leq 125 °C, если не указано иначе)

Наименование параметра, единица	Буквен-	Режим измерения	Типовое значение
измерения	ное		
	обознач		
Коэффициент сглаживания	PSRR	$f_r = 100 \Gamma_{II}$	54
пульсаций, дБ		$U_r = 0.5 U_{SS}$	
	PSRR	• *	54

Примечание – Измерение электрических параметров проводится по схеме подключения, приведенной на рис.1.

ПРЕДЕЛЬНО - ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Наименование параметра	Единица изме-		ельно ый режим	-	ельный жим
	рения	не менее	не более	не менее	не более
Температура кристалла, Т _Ј	°C	-40	125	-	150
Температура хранения, T _{stg}	°C	-	-	-50	150
Входное напряжение, U _I	В	$U_{0} + 0.7$	46	-42	46
Входное напряжение, U _I	В	-	-	ı	65*
$oxed{Bxoдhoй тok, I_I}$	A	-	внутренне ограничен	-	внутренне ограничен
Выходное напряжение, U _Q ,	В	4.9	5.1	-1.0	16
Выходной ток, I_Q	A	-	внутренне ограничен	ı	внутренне ограничен
Ток по выводу "Земля", $I_{\rm M}$	мА	-	-	-0.5	_
Тепловое сопротивление кристалл-среда, R _{th ja}	°С/Вт	_	65**	- 1	65**
Тепловое сопротивление кристалл-корпус, R_{thjc} (ТО-220AB)	°С/Вт	-	3**	-	3**

Примечание – Предельно допустимая мощность Ptot,Вт, рассеиваемая микросхемой при температуре окружающей среды TA , определяется как

$$Ptot = (125 - TA) / Rth ja$$
, (1)

где 125 - предельно допустимая рабочая температура кристалла, °C

** Rth ја - тепловое сопротивление "кристалл - окружающая среда" (для микросхемы без внешнего дополнительного теплоотвода), $^{\circ}$ C /Вт. Значение данного параметра микросхемы составляет Rth ја = 65 $^{\circ}$ C /Вт. Для микросхемы с внешним дополнительным теплоотводом

$$Rth ja = Rth jc + Rth ca, (2)$$

где Rth jc - тепловое сопротивление "кристалл-корпус" микросхемы, °C /Bт. Значение данного параметра микросхемы составляет Rth jc = 3 °C /Bт .

Тепловое сопротивление "корпус-среда" Rth са микросхемы определяется конструкцией теплоотвода и определяется потребителем микросхемы.

Используемый теплоотвод, режим включения (потребляемая мощность) и температура среды должны обеспечивать температуру кристалла не более $TJ \le +125$ °C.

* Время воздействия t ≤ 400 мс

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ

Электрические параметры (U_I=13.5B, $\,$ -40 $^{o}C \le T_{J} \le 125 \,^{o}C$, если не указано иначе)

Наименование параметра,	Буквенное	Режим измерения	Норма	
единица измерения	обозначение	_	мин	макс
Выходное напряжение, В	U_Q	$5 \text{ mA} \le I_Q \le 550 \text{ mA}$ $6 \text{ B} \le U_I \le 26 \text{ B}$	4.9	5.1
		$I_Q \le 300 \text{ mA}$ 26 B $\le U_I \le 36 \text{ B}$	4.9	5.1
Максимальный выходной ток, мА	I _{O max}	$U_O = 0 B$	650	_
Ток потребления, мА $I_q = I_l - I_Q$	I_q	$I_Q = 5 \text{ MA}$	_	1.5
		$I_{\rm O} = 550 \text{mA}$	_	75
		$I_Q = 550 \text{ mA};$ $U_I = 5 \text{ B}$	_	90
Остаточное напряжение, мВ	U_{dr}	$I_{\rm O} = 550 \text{mA}$	_	700
Изменение выходного напряжения при изменении тока нагрузки, мВ	$\Delta U_{Q(I)}$	$5\text{MA} \le I_Q \le 550\text{MA}$ $U_I = 6\text{ B}$	_	50
Изменение выходного напряжения при изменении входного напряжения, мВ	$\Delta U_{Q(U)}$	$6B \le U_I \le 26B$ $I_Q = 5MA$	_	25
	Защита от перена	апряжения		
Напряжение выключения, В	$U_{I,OV}$	_	42	46
Ппимечания	$U_{\rm I,OV}$	_	42	

Примечания

Измерение электрических параметров проводится при подключении входных емкостей C_I = 1000 мкФ, C_2 = 470 нФ и выходной емкости C_O = 22 мкФ.

СХЕМА ПОДКЛЮЧЕНИЯ ИМС ПРИ ИЗМЕРЕНИИ ЭЛЕКТРОПАРАМЕТРОВ

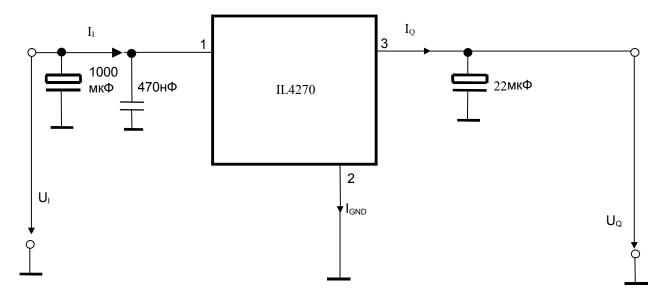
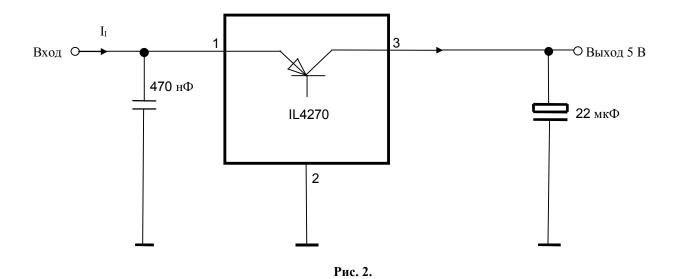



Рис. 1.

СТРУКТУРНАЯ СХЕМА ПРИМЕНЕНИЯ ИМС IL4270

