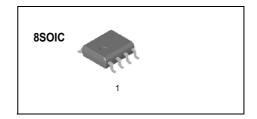
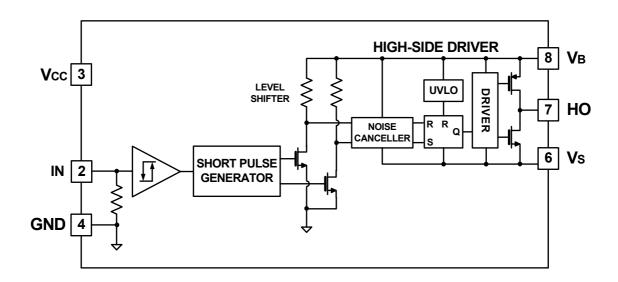


FAN7361 High-Side Gate Driver

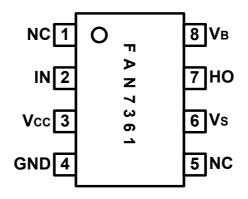
Features


- Floating Channel Designed For Bootstrap Operation To +600V.
- Typically 250mA/500mA Sourcing/Sinking Current Driving Capability
- Common-Mode dv/dt Noise Canceling Circuit
- VCC & VBS Supply Range From 10V To 20V
- UVLO Function
- Output In-phase With Input

Typical Applications


- Fluorescent Lamp Ballast
- PDP Scan Driver
- Motor Control

Description


The FAN7361 is a monolithic high-side gate driver IC for driving MOSFETs and IGBTs, which operate up to +600V. Fairchild's high voltage process and common-mode noise canceling technique give stable operation of high-side driver under high dv/dt noise circumstances. The UVLO circuit prevents malfunction when VBS is lower than the specified threshold voltage. Output drivers typically source/sink 250mA/500mA, respectively, which is suitable for the applications such as fluorescent lamp ballast, PDP scan driver, motor control, etc.

Internal Block Diagram

Pin Assignments

Pin Descriptions

Pin No	Symbol	I/O	Description	
1	NC		No Connection	
2	IN		Logic Input for High Side Gate Driver Output	
3	Vcc		Supply Voltage	
4	GND	Logic Ground		
5	NC		No Connection	
6	VS		High Voltage Floating Supply Return	
7	HO		High Side Driver Output	
8	VB		High Side Floating Supply	

Parameter	Symbol	Min.	Тур.	Max.	Unit
High side offset Voltage	Vs	VB-25	-	VB+0.3	
High side floating supply voltage	VB	-0.3		625	
High side floating output voltage HO	VHO	V _S -0.3		V _B +0.3	V
Logic fixed supply voltage	Vcc	-0.3		25	
Logic input voltage(IN)	Vin	-0.3		Vcc+0.3	
Allowable offset voltage SLEW RATE	dVs/dt			± 50	V/ns
Power Dissipation	PD			0.625	W
Thermal resistance, junction to ambient	Rthja			200	°C/W
Junction Temperature	TJ			150	°C
Storage Temperature T _S				150	°C

Absolute Maximum Ratings

Note : Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltage referenced to GND, all currents are defined positive into any lead.

Recommended Operating Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
High side floating supply voltage	VB	V _S +10	-	V _S +20	
High side floating supply offset voltage	Vs	6-Vcc		600	, , , , , , , , , , , , , , , , , , ,
High side(HO) output voltage	Vно	Vs		VB	V
Logic input voltage(IN)	VIN	GND		Vcc	
Logic supply voltage	Vcc	10		20	
Ambient Temperature	TA	-40		125	°C

ESD Level

Parameter	Pins	Conditions	Level	Unit	
Human Body Model(HBM)	IN, VCC, COM, VB, HO	R=1.5kΩ, C=100pF	±1500		
	VS	R = 1.3K22, C = 100pF	±1000	V	
Machine Model(MM)	All Pins	C=200pF	±300	v	
Charged Device Model(CDM)	All Pins		±500		

FAN7361

Static Electrical Characteristics

(V_{BIAS}(V_{CC}, V_{BS})=15.0V, T_A = 25°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND. The V_O and I_O parameters are referenced to V_S.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
VBS supply under voltage positive going threshold	VBSUV+	VIN=0V	8.2	9.2	10.2	
VBS supply under voltage negative going threshold	VBSUV-	VIN=0V	7.4	8.6	9.2	V
VBS supply under voltage lockout hysteresis	VBSHYS	VIN=0V	-	0.6	-	
Offset supply leakage current	ILK	VB=VS=HO=600V	-	-	10	
Quiescent VBS supply current	IQBS	VIN=0V or 5V	-	50	90	
Quiescent VCC supply current	IQCC	VIN=0V	-	30	80	μA
Operating VBS supply current	IPBS	CL=1nF, f=20kHz	-	420	550	
Logic "1" input voltage	VIH		3.6	-	-	
Logic "0" input voltage	VIL		-	-	1.0	
High Level Output Voltage, VB-VHO	Vон	No load	-	-	0.1	V
Low Level Output Voltage, V _{HO}	Vol	No load	-	-	0.1	
Logic "1" input bias current	lin+	VIN=5V	-	50	90	۸
Logic "0" input bias current	lin-	V _{IN} =0V	-	1.0	2.0	μA
Output high short circuit pulse current	IO+	V_{HO} =0V, V_{IN} =5V, PW \leq 10us	200	250	-	mA
Output low short circuit pulsed current	IO-	V_{HO} =15V, V_{IN} =0V, PW \leq 10us	400	500	-	ШA
Allowable negative VS pin voltage for IN signal propagation to HO	VS		-	-9.8	-7	V

Dynamic Electrical Characteristics

(VBIAS(VCC, VBS)=15.0V, VS=GND, CL=1000pF and TA = 25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Turn-on propagation delay	ton	V _S =0V	-	120	200	
Turn-off propagation delay	toff	Vs=0V or 600V	-	90	180	20
Turn-on rise time	tr		-	70	160	ns
Turn-off fall time	tf		-	30	100	

Typical Characteristics

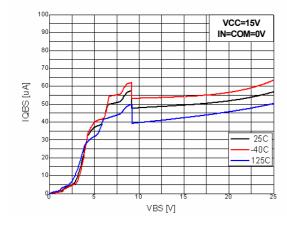


Fig. 1 IQBS vs. Supply Voltage

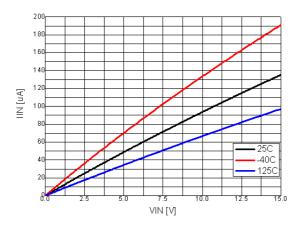


Fig. 3 Input Bias Current vs. Supply Voltage

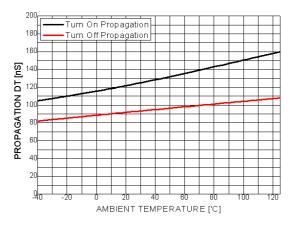


Fig. 5 Turn On/Off Propagation Time vs. Temperature

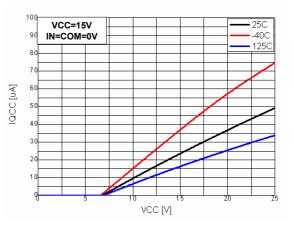


Fig. 2 IQCC vs. Supply Voltage

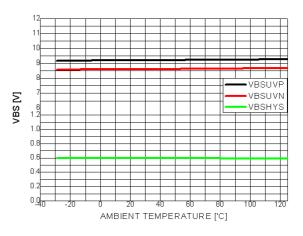


Fig. 4 VBS UVLO vs. Temperature

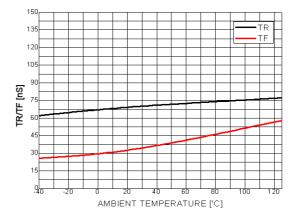


Fig. 6 Rising/Falling Time vs. Temperature

Typical Characteristics

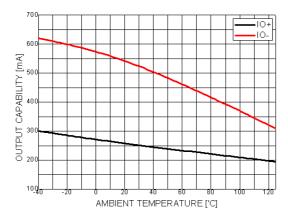
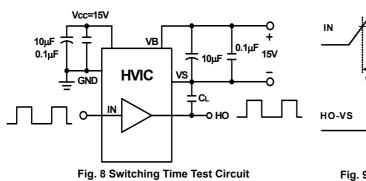



Fig. 7 Output Sinking/Sourcing Current vs. Temperature

Switching Time Definitions

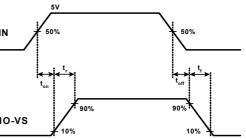
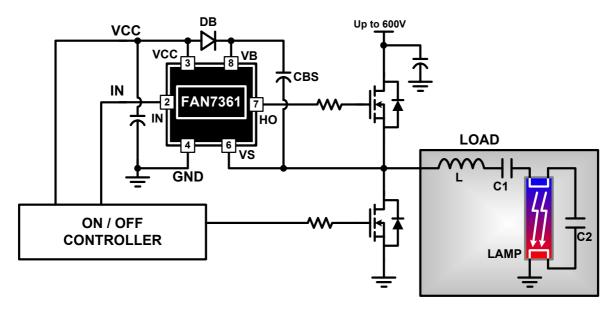
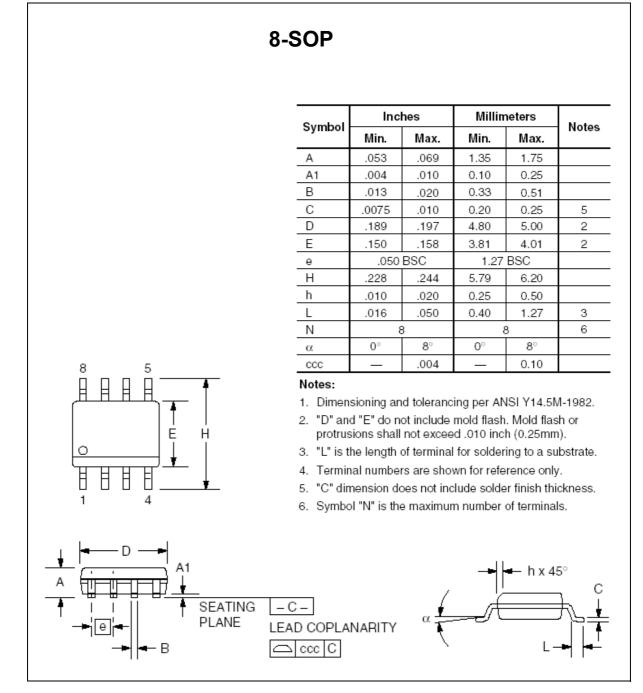



Fig. 9 Input/Output Timing Diagram


Typical Application Circuits

Mechanical Dimensions

Package

Dimensions in millimeters

FAN7361

Ordering Information

Device	Package	Operating Temperature	Packing
FAN7361M	8SOIC	-40°C ~ +125°C	Tube
FAN7361MX	83010	-40 C * +123 C	Tape & Reel

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	IntelliMAX™	POP™	SPM™
ActiveArray™	FAST [™]	ISOPLANAR™	Power247™	Stealth™
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench [®]	SuperSOT™-6
DOME™	GTO™	MicroPak™	QFET [®]	SuperSOT™-8
EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™
E ² CMOS™	I ² C [™]	MSX™	QT Optoelectronics [™]	TinyLogic®
EnSigna™	<i>i-Lo</i> ™	MSXPro™	Quiet Series [™]	TINYOPTO™
FACT™	ImpliedDisconnect™	OCX™	RapidConfigure™	TruTranslation™
FACT Quiet Serie		OCXPro™	RapidConnect™	UHC™
Across the board The Power France	d. Around the world.™ chise®	OPTOLOGIC [®] OPTOPLANAR™	μSerDes™ SILENT SWITCHER [®]	UltraFET [®] UniFET™
Programmable A		PACMAN™	SMART START™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. 115